Skip to main content

Advertisement

Log in

The Two Zones of Floor Failure and its Control via a ‘Dual Key Layer’ Approach

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

In the Jiaozuo mining area of the North China coal field, there are multiple water-rich aquifers close to the coal seam. To prevent water inrush accidents, the subfloor strata needs to be reinforced by grouting before mining. According to how the mechanics and hydrogeological properties of the key floor rock strata changed after grouting, the coal seam floor was divided into two zones: a ‘water conductive fracture zone’ and a ‘mechanically strong damaged zone’. A composite model of a key structurally stable water-control floor layer and a key infiltration-water damage-control floor layer was established after grouting of the uppermost (L8) subfloor aquifer. Microseismic (MS) technology was used to analyze the characteristics of the two zones and the water control capability of the two key layers in faulted and non-faulted regions of the experimental working face, which revealed that the grouted L8 limestone served as a key mechanical barrier layer. The change in the elastic modulus of the rock mass before and after grouting was measured by the borehole ultrasonic method, which showed that the elastic modulus of the rock mass increased by 40–852% after grouting. Based on FLAC3D numerical simulation and field measurements, grouting reduced the failure depth of the floor by 51%. Seven factors that influence the floor water control ‘dual key layers’ were proposed, which were quantified using the analytic hierarchy process (AHP) method. We found that fault activation and water-filled faults were the main factors affecting the water control capability of the dual key layer. The results of the research will contribute to the early warning, prevention, and evaluation of floor water inrushes in mines with similar hydrogeological conditions.

Zusammenfassung

Im Jiaozuo-Bergbaugebiet im nordchinesischen Kohlerevier gibt es mehrere wasserreiche Grundwasserleiter in der Nähe des Kohleflözes. Um Unfälle durch Wassereinbrüche zu verhindern, müssen die Liegendschichten vor dem Abbau durch Verpressen verstärkt werden. Je nachdem, wie sich die mechanischen und hydrogeologischen Eigenschaften der liegenden Gesteinsschichten nach der Verpressung ändern, wird die Flözbasis in zwei Zonen unterteilt: eine "wasserleitende Bruchzone" und eine "mechanisch stark beschädigte Zone". Nach der Verpressung des obersten (L8) Grundwasserleiters wird ein zusammengesetztes Modell unter Verwendung einer strukturell stabilen wasserführenden und einer infiltrations- und schadensbegrenzenden Basisschicht erstellt. Mit Hilfe von Mikroseismik (MS) können die Eigenschaften und die Wasserkontrollfähigkeit der beiden Schlüsselzonen in gestörten und ungestörten Bereichen der Ortsbrust experimentell analysiert werden. Dabei zeigt sich, dass der durch die Verpressung behandelte Kalkstein L8 als wichtige mechanische Sperrschicht dient. Die Veränderung des Elastizitätsmoduls des Kalksteins vor und nach der Verpressung wird durch Bohrloch-Ultraschall untersucht. Es zeigt sich, dass das Elastizitätsmodul nach der Verpressung um 40 % bis 852 % anstieg. Numerische FLAC3D-Simulation und Feldmessungen deuten darauf hin, dass somit die Versagenstiefe des Untergrundes um 51 % reduziert werden kann. Es können sieben Faktoren, welche die Wasserführung in der Basisschicht beeinflussen, identifiziert und mit Hilfe einer AHP-Methode (Analytic Hierarchy Process) quantifiziert werden. Hauptfaktoren, die die Wasserkontrollfähigkeit der beiden Schlüsselschichten beeinflussten, sind die Reaktivierung von Störungszonen und die Wasserführung in Störungsbereichen. Die Forschungsergebnisse können zur Frühwarnung, Prävention und Bewertung von Liegendwassereinbrüchen in Bergwerken mit ähnlichen hydrogeologischen Randbedingungen beitragen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are available from the corresponding author upon request.

References

  • Andrews K, Keim S (2021) Underground mine stream crossing assessment: a multi-disciplinary approach. Int J Min Sci Technol 31(1):59–65

    Article  Google Scholar 

  • Fan R, Zhang H, Gao Y (2023) The global cooperation in asteroid mining based on AHP, entropy and TOPSIS. Appl Math Comput 437:127535

    Google Scholar 

  • He P, Liu CW, Wang C (2011) Correlation analysis of uniaxial compressive strength and elastic modulus of sedimentary rocks. J Sichuan Univ (eng Sci Ed) 43(04):7–12 (in Chinese)

    Google Scholar 

  • Heydari M, Osanloo M, Başçetin A (2023) Developing a new social impact assessment model for deep open-pit mines. Resour Policy. https://doi.org/10.1016/j.resourpol.2023.103485

    Article  Google Scholar 

  • Hu Y, Li W, Wang QQ, Liu SL, Wang ZK, Zhen K (2019) Evolution of floor water inrush from a structural fractured zone with confined water. Mine Water Environ 38:252–260

    Article  Google Scholar 

  • Huot F, Lellouch A, Given P, Bin L, Clapp RG, Tamas N, Nihei KT, Biondi BL (2022) Detection and characterization of microseismic events from fiber-optic DAS data using deep learning. Seismol Res Lett 93(5):2543–2553

    Article  Google Scholar 

  • Li CY, Zuo JP, Huang XH, Wu GS, Li YB, Xing SK (2022) Water inrush modes through a thick aquifuge floor in a deep coal mine and appropriate control technology: a case study from Hebei, China. Mine Water Environ 41:954–969

    Article  CAS  Google Scholar 

  • Liu C, Zhang PS, Ou YC, Yao DX, Tian YT (2022) Analytical stress analysis method of interbedded coal and rock floor over confined water: a study on mining failure depth. J Appl Geophys. https://doi.org/10.1016/j.jappgeo.2022.104720

    Article  Google Scholar 

  • Lu HF, Meng XS, Zhang Y (2020) Mechanical analysis of water barrier performance of floor layered structure key stratum on coal face. J China Univ Min Tech 49(06):1057–1066 (in Chinese)

    CAS  Google Scholar 

  • Ma K, Yuan FZ, Wang HB, Zhang ZH, Sun XY, Peng YL, Wang HY (2021) Fracture mechanism of roof key strata in Dongjiahe coal mine using microseismic moment tensor. Geomat Nat Hazards Risk 12(1):1467–1487

    Article  Google Scholar 

  • Miao W, Zhao L, Liu SQ, Jiang WH, Zhang EM, Li JK (2022) Roof failure mechanism of thin bedrock working faces under loading and analysis based on microseismic monitoring technology. Geofluids. https://doi.org/10.1155/2022/7566637

    Article  Google Scholar 

  • Michas G, Vallianatos F (2020) Scaling properties and anomalous diffusion of the Florina micro-seismic activity: fluid driven? Geomech Energy Environ 24:100155

    Article  Google Scholar 

  • Mu WQ, Li LC, Zhang YS, Yu GF, Ren B (2023) Failure mechanism of grouted floor with confined aquifer based on mining-induced data. Rock Mech Rock Eng 56:2897–2922

    Article  Google Scholar 

  • Prem R, Kumar PP, Pandey V (2023) Groundwater spring potential zonation using AHP and fuzzy-AHP in eastern Himalayan region: Papum Pare district, Arunachal Pradesh, India. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-023-26769-w

    Article  Google Scholar 

  • Quiel SE, Naito CJ, Fallon CT (2019) A non-emulative moment connection for progressive collapse resistance in precast concrete building frames. Eng Struct 179:174–188

    Article  Google Scholar 

  • Saaty TL (1994) How to make a decision: the analytic hierarchy process. Interfaces 24(6):19–43. https://doi.org/10.1287/inte.24.6.19

    Article  Google Scholar 

  • Waikar ML, Nilawar AP (2014) Identification of ground water potential zone using remote sensing and GIS techniques. Int J Adv Res Publ 3(5):12163–12174. https://doi.org/10.21474/ijar01/7116

    Article  Google Scholar 

  • Xiao L, Li F, Niu C, Dai G, Qiao Q, Lin C (2023a) Evaluation of water inrush hazard in coal seam roof based on the AHP-CRITIC composite weighted method. Energies 16:114. https://doi.org/10.3390/en16010114

    Article  Google Scholar 

  • Xiao ZM, Gu ST, Zhang YX, Wang H (2023b) An effective control method of rock burst induced by shear instability of fault structure under complicated geological conditions. Bull Eng Geol Environ 82:105. https://doi.org/10.1007/s10064-023-03119-1

    Article  Google Scholar 

  • Xu YC, Xie XF, Liu SQ (2017) Quantitative determination of mechanical property of “enhance-damage” for floor rock mass in grouting reinforcement working face. J Min Safe Eng 34(06):1186–1193 (in Chinese)

    Google Scholar 

  • Xu TF, Liang X, Xia Y, Jiang ZJ, Fabrizio G (2022) Performance evaluation of the Habanero enhanced geothermal system, Australia: optimization based on tracer and induced micro-seismicity data. Renew Energy 181:1197–1208

    Article  Google Scholar 

  • Zhai M, Bai H (2023) Precise application of grouting technology in underground coal mining: water inrush risk of floor elimination. Environ Sci Pollut Res 30:24361–24376

    Article  Google Scholar 

  • Zhai ML, Bai HB, Wu LY, Wu GM, Yan XZ, Ma D (2022) A reinforcement method of floor grouting in high-water pressure working face of coal mines: a case study in Luxi coal mine, North China. Environ Earth Sci 81:28

    Article  Google Scholar 

  • Zuo JP, Wu GS, Du J, Lei B, Li YB (2022) Rock strata failure behavior of deep Ordovician limestone aquifer and multi-level control technology of water inrush based on microseismic monitoring and numerical methods. Rock Mech Rock Eng 55:4591–4614

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Jiulishan coal mine for their partial funding, providing field testing sites, and related data. This work was supported by the National Natural Science Foundation of China (Fund 51934008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Miao.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, W., Xu, Y., Guo, D. et al. The Two Zones of Floor Failure and its Control via a ‘Dual Key Layer’ Approach. Mine Water Environ 43, 117–135 (2024). https://doi.org/10.1007/s10230-024-00974-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-024-00974-6

Keywords

Navigation