Skip to main content

Advertisement

Log in

Concerns with Passive Anaerobic Bioreactors for Selenium Removal from Coal Slurry Liquid Wastes

Problemas de los biorreactores anaerobios pasivos para la eliminación del selenio de los residuos líquidos de lodos de carbón

标题: 用于煤桨废液脱硒的被动厌氧生物反应器研究

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Passive anaerobic bioreactors (PABs) are flow-through trenches filled with plant substrates that serve as energy and carbon sources for bacteria that carry out water treatment processes. In this study, the effectiveness of PABs to bioreduce selenate to insoluble Se (0) and improve the water quality of coal slurry impoundment liquid (CSL) was evaluated for seven months in bench-scale PABs containing four types of substrates with elemental carbon: nitrogen ratios (C:N) ranging from 78 to 837. Selenate was rapidly reduced from 0.6 to 0.05 mg/L in 15 days in PABs containing intermediate C:N substrates (Miscanthus and switchgrass (Panicum virgatum)) but not in PABs containing low or high C:N substrates (Timothy-hay (Phleum pratense) and hardwood chips). Nitrate was rapidly reduced from 10 to < 1 mg N/L in 15 days in all PABs, but nitrate was only partially denitrified to nitrous oxide in PABs containing low and high C:N substrates due to strongly acidic conditions that inhibited nitrous oxide reductase. In all of the PABs, leaching and anaerobic decomposition of substrates released high concentrations of dissolved organic carbon, phosphorus, and several metals, greatly exceeding guideline concentrations. It is strongly recommended that PAB effluent quality be considered before implementing this technology for the treatment of mine water or any other type of wastewater intended for release to natural water bodies.

Resumen

Los biorreactores anaerobios pasivos (PAB) son canales de flujo continuo llenas de sustratos vegetales que sirven como fuentes de energía y carbono para las bacterias que llevan a cabo los procesos de tratamiento del agua. En este estudio, se evaluó durante siete meses la eficacia de los PAB para la biorreducción de selenato a Se insoluble(0) y la mejora de la calidad del agua de los líquidos de los diques de lodos de carbón (CSL) en PAB a escala de banco que contenían cuatro tipos de sustratos con proporciones de carbono elemental:nitrógeno (C:N) que oscilaban entre 78 y 837. El selenato se redujo rápidamente de 0,6 a 0,05 mg/L en 15 días en PABs que contenían sustratos C:N intermedios (Miscanthus y pasto varilla (Panicum virgatum)) pero no en PABs que contenían sustratos C:N bajos o altos (Timothy-hay (Phleum pratense) y virutas de madera dura). El nitrato se redujo rápidamente de 10 a <1 mg N/L en 15 días en todos los PABs, pero el nitrato sólo se desnitrificó parcialmente a óxido nitroso en los PABs que contenían sustratos de bajo y alto C:N debido a las condiciones fuertemente ácidas que inhibieron la óxido nitroso reductasa. En todos los PABs, la lixiviación y la descomposición anaeróbica de los sustratos liberaron altas concentraciones de carbono orgánico disuelto, fósforo y varios metales, superando ampliamente las concentraciones guía. Se recomienda encarecidamente tener en cuenta la calidad de los efluentes de los PABs antes de aplicar esta tecnología para el tratamiento de las aguas de mina o de cualquier otro tipo de aguas residuales destinadas a ser vertidas en masas de agua naturales.

摘 要

被动厌氧生物反应器 (PABs) 是—种填满植物基质的流通渠, 能为水处理过程中的细菌提供能量源及碳源. 本次研究在含有四种基底且碳氮元素比率 (C:N) 在78至837之间的小型被动厌氧生物反应器中, 对PABs生物还原硒酸盐至不溶性硒Se (0), 改善煤浆蓄水液 (CSL) 水质的效果进行了7个月的评估. 在含有中度碳氮比基质 (芒草和柳枝稷草) 的PABs中, 硒的含量在15天内从0.6mg/L迅速降至0.05mg/L; 但在含有低度或高度碳氮比基质 (猫尾草和硬木屑) 的PABs中则没有. 在所有PABs中, 硝酸盐在15天内从10mg N/L迅速降至<1 mg N/L; 但在含有低度或高度碳氮比基质的PABs中, 由于强酸环境抑制了—氧化二氮还原酶, 硝酸盐仅部分脱氮为—氧化二氮. 在所有PABs中, 基质的浸出和厌氧分解释放出的高浓度溶解有机碳, 磷和几种金属, 大大超过了指导浓度. 强烈建议在采用该技术处理矿井水或任何其他类型的排放到自然水体的废水之前, 要考虑PABs的出水水质.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

Data Availability

The data that support the findings of this study are available from the corresponding author, [EMD], upon reasonable request.

References

  • Addy K, Gold AJ, Christianson LE, David MB, Schipper LA, Ratigan NA (2016) Denitrifying bioreactors for nitrate removal: a meta-analysis. J Environ Qual 45(3):873–881

    Article  Google Scholar 

  • Aken BV, Quaranta JD, Mack B, Yu H, Ducatman AM, Ziemkiewicz PF (2015) Environmental contaminants in coal slurry intended for underground injection in the state of West Virginia. J Environ Eng 141(1):05014004

    Article  Google Scholar 

  • Andresen E, Peiter E, Küpper H (2018) Trace metal metabolism in plants. J Exp Bot 69(5):909–954

    Article  Google Scholar 

  • Arsentyev V, Vaisberg L, Ustinov I, Gerasimov A (2016) Perspectives of reduced water consumption in coal cleaning. In: Litvinenko V (ed), Proc, XVIII International Coal Preparation Congress, Springer International Publishing, Switzerland, pp 1075–1081

  • Barber SA (1995) Soil nutrient bioavailability: a mechanistic approach. John Wiley & Sons

    Google Scholar 

  • Bays JS, Thomas BT, Evans D (2014) Biochemical reactors for selenium treatment. In: Bless D, Grosse D (eds), Proc, EPA National Conf on Mining-Influenced Waters for Characterization, Source Control and Treatment, Environmental Protection Agency, pp 45–47

  • Bremner JM (1965) Total Nitrogen. In: Black CA (ed) Methods of Soil Analysis. Soil Science Society of America, Madison, WI USA, pp 1149–1178

    Google Scholar 

  • Brenzinger K, Dörsch P, Braker G (2015) pH-driven shifts in overall and transcriptionally active denitrifiers control gaseous product stoichiometry in growth experiments with extracted bacteria from soil. Front Microbiol 6:961

    Article  Google Scholar 

  • Bryant G, McPhilliamy S, Childers H (2002) A survey of the water quality of streams in the primary region of mountaintop/valley fill coal mining. Mountaintop mining/valley fill programmatic environmental impact statement, Region 3, US Environmental Protection Agency, Philadelphia

  • Cadmus P, Brinkman SF, May MK (2018) Chronic toxicity of ferric iron for North American aquatic organisms: Derivation of a chronic water quality criterion using single species and mesocosm data. Arch Environ Contam Toxicol 74(4):605–615

    Article  Google Scholar 

  • Cameron SG, Schipper LA (2010) Nitrate removal and hydraulic performance of organic carbon for use in denitrification beds. Ecol Eng 36(11):1588–1595

    Article  Google Scholar 

  • CCME (Canadian Council of Ministers of the Environment) (2017) Canadian Water Quality Guidelines for the Protection of Aquatic Life: CCME Water Quality Index, User’s Manual 2017 Update. CCME, Winnipeg

  • Christianson LE, Bhandari A, Helmers MJ (2009) Emerging technology: denitrification bioreactors for nitrate reduction in agricultural waters. J Soils Water Conserv 64(5):139A-141A

    Article  Google Scholar 

  • Christianson LE, Bhandari A, Helmers MJ (2011) Pilot-scale evaluation of denitrification drainage bioreactors: reactor geometry and performance. J Environ Eng 137(4):213–220

    Article  Google Scholar 

  • Crutchfield JD, Grove JH (2011) A new cadmium reduction device for the microplate determination of nitrate in water soil plant tissue and physiological fluids. J AOAC Int 94(6):1896–1905

    Article  Google Scholar 

  • D’Angelo EM, Crutchfield JD, Vandiviere M (2001) Rapid sensitive microscale determination of phosphate in water and soil. J Environ Qual 30(6):2206–2209

    Article  Google Scholar 

  • D’Angelo EM, Kovzelove CA, Karathanasis AD (2009) Carbon sequestration processes in temperate soils with different chemical properties and management histories. Soil Sci 174(1):45–55

    Article  Google Scholar 

  • D’Angelo EM, Karathanasis AD, Sparks EJ, Ritchey SA, Wehr-McChesney SA (2005) Soil carbon and microbial communities at mitigated and late successional bottomland forest wetlands. Wetlands 25(1):162–175

    Article  Google Scholar 

  • DeNicola DM, Stapleton MG (2002) Impact of acid mine drainage on benthic communities in streams: the relative roles of substratum vs aqueous effects. Environ Pollut 119(3):303–315

    Article  Google Scholar 

  • Dörsch P, Braker G, Bakken LR (2012) Community-specific pH response of denitrification: experiments with cells extracted from organic soils. FEMS Microbiol Ecol 79(2):530–541

    Article  Google Scholar 

  • Fenton O, Healy MG, Brennan FP, Thornton SF, Lanigan GJ, Ibrahim TG (2016) Holistic evaluation of field-scale denitrifying bioreactors as a basis to improve environmental sustainability. J Environ Qual 45(3):788–795

    Article  Google Scholar 

  • Fiedler S, Vepraskas MJ, Richardson JL (2007) Soil redox potential: Importance, field measurements, and observations. Adv Agron 94:1–54

    Article  Google Scholar 

  • Gibson LT, Watt CM (2010) Acetic and formic acids emitted from wood samples and their effect on selected materials in museum environments. Corros Sci 52(1):172–178

    Article  Google Scholar 

  • Golder Associates (2020) State-of-knowledge on Selenium Treatment Technologies, prepared for North American Metals Council-Selenium Working Group. https://www.namc.org/docs/00300393.pdf. Accessed 15 Nov 2022

  • Griffith MB, Norton SB, Alexander LC, Pollard AI, LeDuc SD (2012) The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review. Sci Total Environ 417–418:1–12

    Article  Google Scholar 

  • Healy MG, Barrett M, Lanigan GJ, Serrenho AJ, Ibrahim TG, Thornton SF, Rolfe SA, Huang WE, Fenton O (2015) Optimizing nitrate removal and evaluating pollution swapping trade-offs from laboratory denitrification bioreactors. Ecol Eng 74:290–301

    Article  Google Scholar 

  • Healy MG, Ibrahim TG, Lanigan GJ, Serrenho AJ, Fenton O (2012) Nitrate removal rate efficiency and pollution swapping potential of different organic carbon media in laboratory denitrification bioreactors. Ecol Eng 40:198–209

    Article  Google Scholar 

  • Heaton EA, Dohleman FG, Long SP (2008) Meeting U.S. biofuel goals with less land: the potential of Miscanthus. Glob Chang Biol 14(9):2000–2014

    Article  Google Scholar 

  • Hoover NL, Bhandari A, Soupir ML, Moorman TB (2016) Woodchip denitrification bioreactors: impact of temperature and hydraulic retention time on nitrate removal. J Environ Qual 45(3):803–812

    Article  Google Scholar 

  • IFC (International Finance Corporation) (2007) World Bank Group Environmental, Health, and Safety Guidelines. International Finance Corp, Washington, DC

    Google Scholar 

  • Khan H, Khan AA, Hall S (2005) The Canadian water quality index: a tool for water resources management. In: Proc, MTERM International Conf, Thailand

  • Kotowska MM, Wright IJ, Westoby M (2020) Parenchyma abundance in wood of evergreen trees varies independently of nutrients. Front Plant Sci 11:86

    Article  Google Scholar 

  • Lemly AD (2002) Symptoms and implications of selenium toxicity in fish: the Belews Lake case example. Aquat Toxicol 57:39–49

    Article  Google Scholar 

  • Liu B, Frostegård Å, Bakken LR (2014) Impaired reduction of N2O to N2 in acid soils is due to a posttranscriptional interference with the expression of nosZ. Mbio 5(3):e01383-e1414

    Article  Google Scholar 

  • Luther GW 3rd, Findlay AJ, Macdonald DJ, Owings SM, Hanson TE, Beinart RA, Girguis PR (2011) Thermodynamics and kinetics of sulfide oxidation by oxygen: a look at inorganically controlled reactions and biologically mediated processes in the environment. Front Microbiol 2:62

    Article  Google Scholar 

  • Mallin MA, Cahoom LB (2020) The hidden impacts of phosphorus pollution to streams and rivers. BioSci 70:315–329

    Article  Google Scholar 

  • Mansour MMF (2000) Nitrogen containing compounds and adaptation of plants to salinity stress. Biol Plant 43(4):491–500

    Article  Google Scholar 

  • Martin AR, Erickson DL, Kress WJ, Thomas SC (2014) Wood nitrogen concentrations in tropical trees: phylogenetic patterns and ecological correlates. New Phytol 204(3):484–495

    Article  Google Scholar 

  • McClaugherty CA, Pastor J, Aber JD, Melillo JM (1985) Forest litter decomposition in relation to soil nitrogen dynamics and litter quality. Ecology 66(1):266–275

    Article  Google Scholar 

  • McRae NK, Gaw S, Glover CN (2016) Mechanisms of zinc toxicity in the galaxiid fish, Galaxias maculatus. Comp Biochem Physiol C Toxicol Pharmacol 179:184–190

    Article  Google Scholar 

  • Mirjafari P, Baldwin SA (2015) Performance of sulphate-and selenium-reducing biochemical reactors using different ratios of labile to recalcitrant organic materials. Water Sci Technol 72(6):875–881

    Article  Google Scholar 

  • MRI (Midwest Research Institute) (1995) Emission Factor Documentation for AP-42 Section 11.10 Coal Cleaning Final Report. U.S. Environmental Protection Agency. Washington, DC

  • Muyssen BT, De Schamphelaere KA, Janssen CR (2006) Mechanisms of chronic waterborne Zn toxicity in Daphnia magna. Aquat Toxicol 77(4):393–401

    Article  Google Scholar 

  • Pavinato PS, Merlin A, Rosolem CA (2008) Organic compounds from plant extracts and their effect on soil phosphorus availability. Pesqui Agropecu Bras 43(10):1379–1388

    Article  Google Scholar 

  • Peuranen S, Vuorinen PJ, Vuorinen M, Hollender A (1994) The effects of iron, humic acids and low pH on the gills and physiology of brown trout (Salmo trutta). Ann Zool Fenn 31(4):389–396

    Google Scholar 

  • Presser TS (2013) Selenium in ecosystems within the mountaintop coal mining and valley-fill region of southern West Virginia-assessment and ecosystem-scale modeling. USGS Professional Paper 1803:86

    Google Scholar 

  • Rech SA, Macy JM (1992) The terminal reductases for selenate and nitrate respiration in Thauera selenatis are two distinct enzymes. J Bacteriol 174(22):7316–7320

    Article  Google Scholar 

  • Robertson WD (2010) Nitrate removal rates in woodchip media of varying age. Ecol Eng 36(11):1581–1587

    Article  Google Scholar 

  • Ryan MG, Melillo JM, Ricca A (1990) A comparison of methods for determining proximate carbon fractions of forest litter. Can J for Res 20(2):166–171

    Article  Google Scholar 

  • Sander R (2014) Compilation of Henry’s law constants, version 3.99. Atmos Chem Phys Discuss 14:29615–30521

    Google Scholar 

  • Schipper LA, Robertson WD, Gold AJ, Jaynes DB, Cameron SC (2010) Denitrifying bioreactors – an approach for reducing nitrate loads to receiving waters. Ecol Eng 36(11):1532–1543

    Article  Google Scholar 

  • Schipper R (2012) Rutkowski T (2012) Three-year pilot case study of biochemical reactor treatment of selenium. J Am Soc Min Reclam 2012:457–469

    Google Scholar 

  • Séguin V, Gagnon C, Courchesne F (2004) Changes in water extractable metals, pH, and organic carbon concentrations at the soil-root interface of forested soils. Plant Soil 260(1):1–17

    Article  Google Scholar 

  • Shaw AR, Takacs I, Pagilla K, Riffat R, DeClippeleir H, Wilson C, Murthy S (2015) Toward universal half-saturation coefficients: describing extant KS as a function of diffusion. Water Environ Res 87(5):387–391

    Article  Google Scholar 

  • Shi Z, Tang JC, Cheng R, Luo D, Liu S (2015) A review of nitrogen allocation in leaves and factors in its effects. Acta Ecol Sin 35(18):5909–5919

    Google Scholar 

  • Sinharoy A, Lens PNL (2020) Biological removal of selenate and selenite from wastewater: options for selenium recovery as nanoparticles. Curr Pollut Rep 6:230–249

    Article  Google Scholar 

  • Tabatabai MA (1974) A rapid method for determination of sulfate in water samples. Environ Lett 7(3):237–243

    Article  Google Scholar 

  • Thiffault E, Hannam KD, Quideau SA, Paré D, Bélanger N, Oh SW, Munson AD (2008) Chemical composition of forest floor and consequences for nutrient availability after wildfire and harvesting in the boreal forest. Plant Soil 308:37–53

    Article  Google Scholar 

  • Torrans EL, Clemens HP (1982) Physiological and biochemical effects of acute exposure of fish to hydrogen sulfide. Comp Biochem Physiol C Toxicol Pharmacol 71(2):183–190

    Article  Google Scholar 

  • Tran G, Lebas F (2015) Timothy grass (Phleum pratense). Feedipedia, a programme by INRA, CIRAD, AFZ, and FAO. https://www.feedipedia.org/search/node/Timothy. Accessed 15 Nov 2022

  • U.S. EIA (US Energy Information Administration) (2020) Annual Coal Report 2020. https://www.eia.gov/coal/annual/pdf/acr.pdf. Accessed 15 Nov 2022

  • U.S. EPA (U.S. Environmental Protection Agency) (1978) Nitrogen, Kjeldahl, Total (Colorimetric, Automated Phenate) by Autoanalyzer, Method 351.1. U.S. Environmental Protection Agency, Washington DC. https://www.epa.gov/sites/default/files/2015-08/documents/method_351-1_1978.pdf. Accessed 15 Nov 2022

  • U.S. EPA (1994) Method 200.8: Determination of Trace Elements in Waters and Wastes by Inductively Coupled Plasma-Mass Spectrometry, Revision 5.4. Cincinnati, OH. https://www.epa.gov/sites/default/files/2015-06/documents/epa-200.8.pdf. Accessed 15 Nov 2022

  • U.S. EPA (2011) A Field-Based Aquatic Life Benchmark for Conductivity in Central Appalachian Streams. Office of Research and Development, National Center for Environmental Assessment, Washington, DC. EPA/600/R-10/023

  • U.S. EPA (2014a) Method 6010D (SW-846): Inductively Coupled Plasma-Atomic Emission Spectrometry, Revision 4. Washington, DC. https://www.epa.gov/sites/default/files/2015-12/documents/6010d.pdf. Accessed 15 Nov 2022

  • U.S. EPA (2014b) General Policies. Ch 5 in Water Quality Standards Handbook. EPA 820-B-14–004. U.S. Environmental Protection Agency, Office of Water, Washington, DC. http://www.epa.gov/wqshandbook. Accessed 15 Nov 2022

  • U.S. EPA (2016) Aquatic Life Ambient Water Quality Criterion for Selenium - freshwater. Available at https://www.epa.gov/sites/default/files/2016-07/documents/aquatic_life_awqc_for_selenium_-_freshwater_2016.pdf. Accessed 15 Nov 2022

  • USDA (U.S. Dept of Agriculture) (2011) Carbon to nitrogen ratios in cropping systems. https://marionswcd.org/wp-content/uploads/C_N_ratios_cropping_systems.pdf. Accessed 15 Nov. 2022

  • Walker R, Golder Associates, Inc (2010) Final Report Passive Selenium Bioreactor-Pilot Scale Testing. U.S. Bureau of Reclamation Science and Technology Program, Project No. 4414. U.S. Bureau of Reclamation, Grand Junction, CO

  • Weatherburn MW (1967) Phenol-hypochlorite reaction for determination of ammonia. Anal Chem 39(8):971–974

    Article  Google Scholar 

  • Wright LL, Turhollow A (2010) Switchgrass selection as a “model” bioenergy crop: a history of the process. Biomass Bioenerg 34(6):851–868

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful for the graduate student assistantship and research support to MDAM from the University of Kentucky Plant and Soil Sciences Department. The authors also greatly appreciate technical support from Tami Smith and Megan Combs.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elisa M. D’Angelo.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 561 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

D’Angelo, E.M., Mahmud, M.D.A. & Unrine, J.M. Concerns with Passive Anaerobic Bioreactors for Selenium Removal from Coal Slurry Liquid Wastes. Mine Water Environ 42, 40–49 (2023). https://doi.org/10.1007/s10230-023-00921-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-023-00921-x

Keywords

Navigation