Abstract
Determining the origin of groundwater in active and unstable mining environments has proven quite challenging. We evaluated the origin and salinity of the groundwater using major/minor ions, 2H and 18O stable isotopes, and 3H and 14C radioisotopes. Samples were collected from a multi-aquifer system including three distinct aquifers: an upper alluvial aquifer (UAA), a lower alluvial aquifer (LAA), and a hard-rock aquifer (HRA). The water facies for most of the samples were Na-Cl with total dissolved solid concentrations ranging from 1.1 g L−1 in the freshwater of the Kheirabad aquifer (KhA), 148.8 g L−1 in the brines of the HRA, and 321 g L−1 in a salt playa. The unique ionic relationships between the ions imply the salinity mainly originates from halite dissolution. Moreover, the groundwater of HRA and LAA was altered by reverse cation exchange. Although the stable isotope data suggested a modern meteoric water source for the KhA samples, the UAA, LAA, and HRA groundwaters were significantly enriched relative to the local meteoric water line. Dating with 3H and 14C radioisotopes confirmed the characteristic differences between the aquifers with ages of 6200 (UAA), 18,000 (LAA), and 27,500 years (HRA), which ultimately supported their varied origins. Consequently, a regional conceptual flow model was developed based on the geological settings, stratigraphic evidence, hydrochemistry, and isotopic properties, which suggests that the UAA, LAA, and HRA were due to three transgressions of inland lakes 6200, 18,000, and 27,500 ago, respectively.
Resumen
La determinación del origen de las aguas subterráneas en entornos mineros activos e inestables resulta un importante desafío. Hemos evaluado el origen y la salinidad del agua subterránea utilizando iones principales y secundarios, isótopos estables 2H y 18O, y radioisótopos 3H y 14C. Se tomaron muestras de un sistema multiacuífero que incluía tres acuíferos distintos: un acuífero aluvial superior (UAA), un acuífero aluvial inferior (LAA) y un acuífero de roca dura (HRA). La mayoría de las muestras eran de Na-Cl con concentraciones totales de sólidos disueltos que oscilaban entre 1,1 g.L-1 en el agua dulce del acuífero de Kheirabad (KhA), 148,8 g.L-1 en las salmueras del HRA y 321 g.L-1 en una playa salada. Las relaciones iónicas únicas entre los iones implican que la salinidad se origina principalmente en la disolución de la halita. Además, las aguas subterráneas de la HRA y la LAA fueron alteradas por el intercambio catiónico inverso. Aunque los datos de isótopos estables sugerían una fuente de agua meteórica moderna para las muestras de KhA, las aguas subterráneas de UAA, LAA y HRA estaban significativamente enriquecidas en relación con la línea de agua meteórica local. La datación con radioisótopos 3H y 14C confirmó las diferencias características entre los acuíferos con edades de 6.200 (UAA), 18.000 (LAA) y 27.500 años (HRA), lo que en última instancia apoyó sus variados orígenes. En consecuencia, se elaboró un modelo de flujo conceptual regional basado en la configuración geológica, las pruebas estratigráficas, la hidroquímica y las propiedades isotópicas, que sugiere que el UAA, el LAA y el HRA se debieron a tres transgresiones de lagos interiores hace 6.200, 18.000 y 27.500 años, respectivamente.
抽象的
活跃和不稳定采矿环境的地下水来源确定具有较大难度。我们利用主要/次要离子、2H与18O稳定同位素和3H与14C放射性同位素分析了地下水的来源和盐度。水样取自三个不同含水层组成的多含水层地下水系统: 上部冲积含水层 (UAA) 、下部冲积含水层 (LAA) 和硬岩含水层 (HRA) 。多数水样为Na-Cl型, 水样的总溶解固体 (TDS) 从Kheirabad含水层 (KHA) 的淡水1.1 g L −1, 硬岩含水层 (HRA) 的卤水148.8 g L −1, 到沙漠含盐盆地水321 g L −1。离子间的特有关系说明盐度主要源自盐岩溶解。此外, 下部冲积含水层 (LAA) 和硬岩含水层 (HRA) 的地下水因反向阳离子交换有所变化。虽然稳定同位素数据表明Kheirabad (KhA)含水层水样主要源自现代降水, 但是上部冲积含水层 (UAA) 、下部冲积含水层 (LAA) 和硬岩含水层 (HRA) 相对于当地降水线已经富水。3H和14C放射性同位素测定证实三类含水层的地下水年龄显著不同, 分别为上部冲积含水层 (UAA) 水6200年、下部冲积含水层 (LAA) 水18000年和硬岩含水层 (HRA) 水27500年, 最终支持它们确实来自不同水源。因此, 基于地质背景、地层证据、水化学特点和同位素特性, 建立了区域地下水流概念模型, 模型表明上部冲积含水层 (UAA) 、下部冲积含水层 (LAA) 和硬岩含水层 (HRA) 分别由6200年、18000年和27500年前内陆湖的三次海侵形成。
Zusammenfassung
Die Bestimmung der Herkunft des Grundwassers in aktiven und instabilen Bergbaugebieten hat sich als Herausforderung erwiesen. Wir haben die Herkunft und den Salzgehalt des Grundwassers mit Hilfe von Haupt- und Nebenionen, stabilen 2H- und 18O-Isotopen sowie 3H- und 14C-Radioisotopen untersucht. Die Proben wurden aus einem System mit mehreren Grundwasserleitern entnommen, zu dem drei verschiedene Grundwasserleiter gehören: ein oberer alluvialer Grundwasserleiter (UAA), ein unterer alluvialer Grundwasserleiter (LAA) und ein Festgesteinsgrundwasserleiter (HRA). Die Wasserfazies der meisten Proben war Na-Cl mit Gesamtkonzentrationen an gelösten Feststoffen von 1,1 g L−1 im Süßwasser des Kheirabad-Grundwasserleiters (KhA), 148,8 g L−1 in den Solen des HRA und 321 g L−1 in einer Salz-Playa. Die Ionenverhältnisse deuten darauf hin, dass der Salzgehalt hauptsächlich auf die Auflösung von Halit zurückzuführen ist. Außerdem wurde das Grundwasser von HRA und LAA durch umgekehrten Kationenaustausch verändert. Obwohl die stabilen Isotopendaten auf eine moderne meteorische Wasserquelle für die KhA-Proben schließen lassen, waren die Grundwässer von UAA, LAA, und HRA-Grundwasser im Vergleich zur lokalen Meteoric Water Line deutlich angereichert. Die Datierung mit 3H- und 14C-Radioisotopen bestätigte die charakteristischen Unterschiede zwischen den Grundwasserleitern mit einem Alter von 6.200 (UAA), 18.000 (LAA) und 27.500 Jahren (HRA), was letztlich ihre unterschiedlichen Ursprünge belegt. Folglich wurde auf der Grundlage der geologischen Gegebenheiten, der stratigraphischen Belege, der Hydrochemie und der Isotopeneigenschaften ein regionales konzeptionelles Fließmodell entwickelt, das darauf hindeutet, dass die UAA, LAA und HRA auf drei Transgressionen von Binnenseen vor 6.200, 18.000 bzw. 27.500 Jahren zurückzuführen sind.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Abirifard M, Raeisi E, Zarei M, Zare M, Filippi M, Bruthans J, Talbot CJ (2017) Jahani Salt Diapir, Iran: hydrogeology, karst features and effect on surroundings environment. Int J Speleol 46(3):445–457. https://doi.org/10.5038/1827-806X.46.3.2133
Ahmadi S, Jahanshahi R, Moeini V, Mali S (2018) Assessment of hydrochemistry and heavy metals pollution in the groundwater of Ardestan mineral exploration area, Iran. Environ Earth Sci 77(5):1–13. https://doi.org/10.1007/s12665-018-7393-7
Ait Brahim Y, Benkaddour A, Agoussine M, Ait Lemkademe A, Yacoubi L, Bouchaou L (2015) Origin and salinity of groundwater from interpretation of analysis data in the mining area of Oumjrane, Southeastern Morocco. Environ Earth Sci 74(6):4787–4802. https://doi.org/10.1007/s12665-015-4467-7
Alçiçek H, Bülbül A, Brogi A, Liotta D, Ruggieri G, Capezzuoli E, Meccheri M, Yavuzer İ, Alçiçek MC (2018) Origin, evolution and geothermometry of the thermal waters in the Gölemezli geothermal field, Denizli Basin (SW Anatolia, Turkey). J Volcanol Geotherm Res 349:1–30. https://doi.org/10.1016/j.jvolgeores.2017.07.021
Argamasilla M, Barberá JA, Andreo B (2017) Factors controlling groundwater salinization and hydrogeochemical processes in coastal aquifers from southern Spain. Sci Total Environ 580:50–68. https://doi.org/10.1016/j.scitotenv.2016.11.173
Assari A (2019) Defining hydrogeology of the Gohar-Zamin open pit mine, Iran: a case study in a hard-rock aquifer. Hydrogeol J 27(4):1479–1495. https://doi.org/10.1007/s10040-018-01919-4
Assari A, Mohammadi Z (2017) Combined use of geostatistics and multi-criteria decision analysis to determine new pumping well locations in the Gol-Gohar open pit mine, Iran. Mine Water Environ 36(2):283–298. https://doi.org/10.1007/s10230-017-0442-8
Babaki A, Aftabi AJ (2006) Investigation on the model of iron mineralization at Gol Gohar iron deposit, Sirjan-Kerman. Geosci J 61:40–59 (in Persian)
Bagheri R, Nadri A, Raeisi E, Kazemi GA, Eggenkamp HGM, Montaseri A (2014a) Origin of brine in the Kangan gasfield: isotopic and hydrogeochemical approaches. Environ Earth Sci 72(4):1055–1072. https://doi.org/10.1007/s12665-013-3022-7
Bagheri R, Nadri A, Raeisi E, Shariati A, Mirbagheri M, Bahadori F (2014b) Chemical evolution of a gas-capped deep aquifer, southwest of Iran. Environ Earth Sci 71(7):3171–3180
Baudron P, Alonso-Sarría F, García-Aróstegui JL, Cánovas-García F, Martínez-Vicente D, Moreno-Brotóns J (2013) Identifying the origin of groundwater samples in a multi-layer aquifer system with Random Forest classification. J Hydrol 499:303–315. https://doi.org/10.1016/j.jhydrol.2013.07.009
Belkhiri L, Mouni L, Boudoukha A (2012) Geochemical evolution of groundwater in an alluvial aquifer: case of El Eulma aquifer, East Algeria. J Afr Earth Sci 66–67:46–55. https://doi.org/10.1016/j.jafrearsci.2012.03.001
Boschetti T, Angulo B, Cabrera F, Vásquez J, Montero RL (2016) Hydrogeochemical characterization of oilfield waters from southeast Maracaibo Basin (Venezuela): diagenetic effects on chemical and isotopic composition. Mar Pet Geol 73:228–248. https://doi.org/10.1016/j.marpetgeo.2016.02.020
Bourke SA, Harrington GA, Cook PG, Post VE, Dogramaci S (2014) Carbon-14 in streams as a tracer of discharging groundwater. J Hydrol 519:117–130. https://doi.org/10.1016/j.jhydrol.2014.06.056
Chen L, Ma T, Du Y, Yang J, Liu L, Shan H, Liu C, Cai H (2014) Origin and evolution of formation water in North China Plain based on hydrochemistry and stable isotopes (2H, 18O, 37Cl and 81Br). J Geochem Explor 145:250–259. https://doi.org/10.1016/j.gexplo.2014.07.006
Chen J, Qian H, Gao Y, Wang H, Zhang M (2020) Insights into hydrological and hydrochemical processes in response to water replenishment for lakes in arid regions. J Hydrol 581:124386
Clark ID, Fritz P (2011) Environmental isotopes. In: Environmental isotopes in hydrogeology, Part 3, pp 261–262. https://doi.org/10.1007/978-90-481-2642-2_137
D’amore F, Panichi C (1985) Geochemistry in geothermal exploration. Int J Energy Res 9(3):277–298. https://doi.org/10.1002/er.4440090307
Dansgaard W (1964) Stable isotopes in precipitation. Tellus 16(4):436–468. https://doi.org/10.3402/tellusa.v16i4.8993
Dor N, Syafalni S, Abustan I, Rahman MTA, Nazri MAA, Mostafa R, Mejus L (2011) Verification of Surface- Groundwater Connectivity in an Irrigation Canal Using Geophysical, Water Balance and Stable Isotope Approaches. Water Resour Manag 25(11): 2837–2853. https://doi.org/10.1007/s11269-011-9841-y
Eggenkamp HGM, Louvat P, Agrinier P, Bonifacie M, Bekker A, Krupenik V, Griffioen J, Horita J, Brocks JJ, Bagheri R (2019) The bromine and chlorine isotope composition of primary halite deposits and their significance for the secular isotope composition of seawater. GCA J 264:13–29
Eissa MA, Shawky H, Samy A, Khalil MMH, El Malky M (2018) Geochemical and Isotopic evidence of groundwater salinization processes in El Dabaa area, northwestern coast, Egypt. Geosci J 8(11):392
Gharaat MJ, Mohammadi Z, Rezanezhad F (2020) Distribution and origin of potentially toxic elements in a multi-aquifer system. Environ Sci Pollut Res. https://doi.org/10.1007/s11356-020-10223-2
Gue AE, Mayer B, Grasby SE (2015) Origin and geochemistry of saline spring waters in the Athabasca oil sands region, Alberta, Canada. Appl Geochem 61:132–145. https://doi.org/10.1016/j.apgeochem.2015.05.015
Heidari-Nejad H, Zarei M, Merkel BJ (2017) Evaluating the origin of seepage water in the Golgohar iron mine, Iran. Mine Water Environ 36(4):583–596. https://doi.org/10.1007/s10230-017-0447-3
Huang L, Deng CB, Huang N, Huang XJ (2013) Multivariate statistical approach to identify heavy metal sources in agricultural soil around an abandoned Pb-Zn mine in Guangxi Zhuang Autonomous Region, China. Environ Earth Sci 68(5):1331–1348. https://doi.org/10.1007/s12665-012-1831-8
Jafari A, Karimpour MH, Mazaheri SA, Malekzadeh Shafaroudi A, Askari M (2018) Mineralogy, the nature of magmatic and tectonic setting of amphibolite protolith from Gol Gohar iron ore deposit, Sirjan Kerman. Iran J Petrol 9(3):27–54
Jahanshahi R, Zare M (2015) Assessment of heavy metals pollution in groundwater of Golgohar iron ore mine area. Iran Environ Earth Sci 74(1):505–520. https://doi.org/10.1007/s12665-015-4057-8
Jahanshahi R, Zare M (2017) Delineating the origin of groundwater in the Golgohar Mine area of Iran using stable isotopes of 2H and 18O and hydrochemistry. Mine Water Environ 36(4):550–563. https://doi.org/10.1007/s10230-017-0444-6
Karolytė R, Serno S, Johnson G, Gilfillan SMV (2017) The influence of oxygen isotope exchange between CO2 and H2O in natural CO2-rich spring waters: implications for geothermometry. Appl Geochem 84:173–186. https://doi.org/10.1016/j.apgeochem.2017.06.012
Khaska M, La Salle CLG, Lancelot J, Mohamad A, Verdoux P, Noret A, Simler R (2013) Origin of groundwater salinity (current seawater vs. saline deep water) in a coastal karst aquifer based on Sr and Cl isotopes. Case study of the La Clape massif (southern France). Appl Geochem 37:212–227
Knapton JR (1985) Field guidelines for collection, treatment, and analysis of water samples, Montana District. USGS
Kouchekzadeh A, Zarei M (2017) Introducing hydrochemical diagnostic tools to differentiate sources of salinity, southern Iran. Int J Water 11(3):226–250. https://doi.org/10.1504/IJW.2017.085880
Li P, Wu J, Tian R, He S, He X, Xue C, Zhang K (2018) Geochemistry, Hydraulic connectivity and quality appraisal of multilayered groundwater in the Hongdunzi coal mine, northwest China. Mine Water Environ 37(2): 222–237. https://doi.org/10.1007/s10230-017-0507-8
Li C, Gao X, Liu Y, Wang Y (2019a) Impact of anthropogenic activities on the enrichment of fluoride and salinity in groundwater in the Yuncheng Basin constrained by Cl/Br ratio, δ18O, δ2H, δ13C and δ7Li isotopes. J Hydrol 579: 124211. https://doi.org/10.1016/j.jhydrol.2019.124211
Li P, Tian R, Liu R (2019b) Solute geochemistry and multivariate analysis of water quality in the Guohua phosphorite Mine, Guizhou Province, China. Expos Health 11(2): 81–94. https://doi.org/10.1007/s12403-018-0277-y
Maknouni S, Zare M, Raeisi E (2018) Determining the hard rock groundwater pathway in Golgohar complex formation using hydrochemical data in AHP. Arab J Geosci. https://doi.org/10.1007/s12517-018-3472-z
Maknouni Gilani S (2019) Design of flood drainage in Golgohar Iron Ore Mine #3. Hydro Sci Mar Eng 1(1):15–21. https://doi.org/10.30564/hsme.v1i1.1255
Masoumi I, Kamali G, Asghari O, Emery X (2020) Assessing the impact of geologic contact dilution in ore/waste classification in the Gol-Gohar iron ore mine, southeastern Iran. Minerals 10(4):336. https://doi.org/10.3390/min10040336
Mohammadi Z (2009) Assessing hydrochemical evolution of groundwater in limestone terrain via principal component analysis. Environ Earth Sci 59(2):429–439. https://doi.org/10.1007/s12665-009-0041-5
Mohammadi Z, Zare M, Sharifzade B (2012) Delineation of groundwater salinization in a coastal aquifer, Bousheher, south of Iran. Environ Earth Sci 67(5):1473–1484
Montcoudiol N, Molson J, Lemieux JM (2015) Géochimie des eaux souterraines en Outaouais (Québec, Canada): une étude à échelle régionale. Hydrogeol J 23(2):377–396. https://doi.org/10.1007/s10040-014-1190-5
Nekouei E, Zarei M, Raeisi E (2016) The influence of diapir brine on groundwater quality of surrounding aquifers, Larestan, Iran. Environ Earth Sci 75(7):571. https://doi.org/10.1007/s12665-015-5237-2
Owen DDR, Cox ME (2015) Hydrochemical evolution within a large alluvial groundwater resource overlying a shallow coal seam gas reservoir. Sci Total Environ 523:233–252. https://doi.org/10.1016/j.scitotenv.2015.03.115
Prasanna MV, Praveena SM, Chidambaram S, Nagarajan R, Elayaraja A (2012) Evaluation of water quality pollution indices for heavy metal contamination monitoring: a case study from Curtin Lake, Miri City, East Malaysia. Environ Earth Sci 67(7):1987–2001. https://doi.org/10.1007/s12665-012-1639-6
Qiao W, Li W, Zhang S, Niu Y (2019) Effects of coal mining on the evolution of groundwater hydrogeochemistry. Hydrogeol J 27(6):2245–2262. https://doi.org/10.1007/s10040-019-01969-2
Scheiber L, Ayora C, Vázquez-Suñé E, Cendón DI, Soler A, Custodio E, Baquero JC (2015) Recent and old groundwater in the Niebla-Posadas regional aquifer (southern Spain): implications for its management. J Hydrol 523:624–635. https://doi.org/10.1016/j.jhydrol.2015.01.076
Scheiber L, Ayora C, Vázquez-Suñé E, Cendón DI, Soler A, Baquero JC (2016) Origin of high ammonium, arsenic and boron concentrations in the proximity of a mine: natural vs. anthropogenic processes. Sci Total Environ 541:655–666. https://doi.org/10.1016/j.scitotenv.2015.09.098
Shafiei B, Haschke M, Shahabpour J (2009) Recycling of orogenic arc crust triggers porphyry Cu mineralization in Kerman Cenozoic arc rocks, southeastern Iran. Miner Depos 44(3):265–283. https://doi.org/10.1007/s00126-008-0216-0
Soltaninejad A, Ranjbar H, Honarmand M, Dargahi S (2018) Evaporite mineral mapping and determining their source rocks using remote sensing data in Sirjan playa, Kerman, Iran. Carbonate Evaporite 33(2):255–274. https://doi.org/10.1007/s13146-017-0339-4
Su Z, Wu J, He X, Elumalai V (2020) Temporal changes of groundwater quality within the groundwater depression cone and prediction of confined groundwater salinity using Grey Markov Model in Yinchuan area of northwest China. Expos Health 12(3):447–468. https://doi.org/10.1007/s12403-020-00355-8
Wang Y, Jiao JJ (2012) Origin of groundwater salinity and hydrogeochemical processes in the confined Quaternary aquifer of the Pearl River Delta, China. J Hydrol 438–439:112–124. https://doi.org/10.1016/j.jhydrol.2012.03.008
Wen X, Lu J, Wu J, Lin Y, Luo Y (2019) Influence of coastal groundwater salinization on the distribution and risks of heavy metals. Sci Total Environ 652:267–277. https://doi.org/10.1016/j.scitotenv.2018.10.250
Yu H, Ma T, Du Y, Chen L (2019) Genesis of formation water in the northern sedimentary basin of South China Sea: clues from hydrochemistry and stable isotopes (D, 18O, 37Cl and 81Br). J Geochem Explor 196:57–65. https://doi.org/10.1016/j.gexplo.2018.08.005
Yuan J, Xu F, Deng G, Tang Y, Li P (2017) Hydrogeochemistry of Shallow groundwater in a karst aquifer system of Bijie City, Guizhou Province. Water 9(8):625. https://doi.org/10.3390/w9080625
Zarei M, Raeisi E, Mahmoudi K (2014) The impact of salt diapirs on the quality of carbonate karst waters, Bastak, Iran. Environ Earth Sci 71(9):3893–3906. https://doi.org/10.1007/s12665-013-2775-3
Zhao Q, Su X, Kang B, Zhang Y, Wu X, Liu M (2017) A hydrogeochemistry and multi-isotope (Sr, O, H, and C) study of groundwater salinity origin and hydrogeochemcial processes in the shallow confined aquifer of northern Yangtze River downstream coastal plain, China. Appl Geochem 86:49–58
Acknowledgements
This research was carried out at Shiraz University and partly supported by the Research and Development Division of the Gohar-Zamin Iron Ore Company. The authors would like to thank the four anonymous reviewers and the Editor-in-Chief for their constructive comments and suggestions.
Author information
Authors and Affiliations
Corresponding author
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gharaat, M.J., Mohammadi, Z., Assari, A. et al. Groundwater Circulation and Origin of Salinity in a Multi-aquifer System: The Gohar-Zamin Mining Area, Iran. Mine Water Environ 41, 996–1014 (2022). https://doi.org/10.1007/s10230-022-00902-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10230-022-00902-6