Skip to main content
Log in

Characterisation of Pb/Zn Tailings and Drainage Waters to Inform Post-Closure Water Treatment Strategies

Caracterización de los relaves de Pb/Zn y de las aguas de drenaje para fundamentar las estrategias de tratamiento del agua luego del cierre

为制定闭坑后废水处理方案分析铅/锌尾矿及其废水的特征

Charakterisierung von Pb/Zn-Bergen und Drainagewässern als Grundlage für Strategien zur Wasserbehandlung nach der Stilllegung

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Both the tailings and associated leachates should be characterised to predict contaminant levels and identify suitable remediation strategies for appropriate closure planning of tailings management facilities (TMFs). Tailings and associated drainage waters from a modern Pb/Zn site were characterised to determine contaminants of possible concern for discharge. The potential for constructed wetlands to provide suitable treatment of tailings waters was assessed over a 10 month period. Tailings were slightly alkaline (pH 8.3), with high net neutralising capacity (578 kg CaCO3/t), very high level of neutralising carbonate minerals (ca. 60%), and low sulphide content (< 5%). Metal content was Zn (2430 mg/kg), Pb (1900 mg/kg), As (620 mg/kg), Sb (80 mg/kg), Ni (50 mg/kg), and Cr (30 mg/kg). The pH dependent leaching demonstrated the potential for higher amounts of metals to be released under acidic conditions (pH < 5), although this would be most unlikely given the very high NP/AP ratio. Drainage waters were net neutral (pH 7.7) but exceedance of surface water directive levels was observed for sulphate, Sb, and Zn. Constructed wetland treatment demonstrated effective Zn and Sb to achieve limit values. Sulphate levels remained high and exceeded the 250 mg/L limit values. Mn values in the wetland effluent exceeded influent levels. Further evaluation of the constructed wetland treatment option is warranted to achieve sufficient treatment of the neutral pH discharge to levels suitable for discharge.

Resumen

Tanto los relaves como los lixiviados asociados deben ser caracterizados para predecir los niveles de contaminantes e identificar las estrategias de remediación adecuadas para la planificación del cierre apropiado de las instalaciones de gestión de relaves (TMF). Se caracterizaron los relaves y las aguas de drenaje asociadas de un emplazamiento moderno de Pb/Zn para determinar los contaminantes de posible interés para el vertido. Se evaluó el potencial de los humedales construidos para proporcionar un tratamiento adecuado de las aguas de los relaves durante un período de 10 meses. Los estériles eran ligeramente alcalinos (pH 8,3), con una elevada capacidad neta de neutralización (578 kg CaCO3/t), un nivel muy alto de minerales carbonatados neutralizantes (aprox. 60%) y un bajo contenido en sulfuros (< 5%). El contenido en metales fue de Zn (2430 mg/kg), Pb (1.900 mg/kg), As (620 mg/kg), Sb (80 mg/kg), Ni (50 mg/kg) y Cr (30 mg/kg). La lixiviación dependiente del pH demostró la posibilidad de que se liberen mayores cantidades de metales en condiciones ácidas (pH < 5), aunque esto sería muy poco probable dada la altísima relación NP/AP muy alta. Las aguas de drenaje eran neutras (pH 7,7), pero se observó la superación de los niveles de la directiva de aguas superficiales para sulfato, Sb y Zn. El tratamiento en humedales construidos demostró ser eficaz para que Zn y Sb alcancen los valores límite. Los niveles de sulfato siguieron siendo elevados y superaron los valores límite de 250 mg/L. Los valores de Mn en el efluente del humedal superaron los niveles del afluente. Se justifica una evaluación adicional de la opción de tratamiento en el humedal construido para lograr un tratamiento suficiente de la descarga de pH neutro a niveles adecuados para la descarga.

抽象

描述尾矿及其浸出物的特征,有助于预测污染物水平,能够为尾矿管理设施(TMF)的闭坑规划选择适当的修复方案。分析了一座现代化铅/锌矿尾矿及其排放废水的特征,以识别排放废水的需要关注污染物。评估了运行10个月的人工湿地的尾矿水处理潜力。尾矿弱碱性(pH值8.3),具有较强净中和能力(578 kg CaCO3/t)、很高碳酸盐矿物中和水平(ca. 60%)和较低硫化物含量(<5%)。尾矿的金属含量为Zn(2430 mg/kg)、Pb(1900 mg/kg)、As(620 mg/kg)、Sb(80 mg/kg)、Ni(50 mg/kg)和Cr(30 mg/kg)。变pH值的滤出试验表明,虽然尾矿内金属在高NP/AP条件下难以释放,但是它们在酸性环境下(pH值<5)具有释放大量金属的潜力。排放废水呈中性(pH=7.7),硫酸盐、锑(Sb)和锌(Zn)含量已超出地表水指令标准。所建人工湿地的处理试验表明,人工湿地可以有效地将锌(Zn)和锑(Sb)降到界限值。硫酸盐水平仍然较高,超过250 mg/L界限值。流经人工湿地,出流水的锰浓度超过了进水。还需要进一步评价所建人工湿地处理方案,以充分处理中性排放废水,达到合理排放水平。

Zusammenfassung

Sowohl die Bergehalden als auch die zugehörigen Sickerwässer sind zu charakterisieren, um den Gehalt an Schadstoffen vorherzusagen und geeignete Sanierungsstrategien für eine angemessene Schließungsplanung für Bergehalden (TMFs) zu ermitteln. Die Bergehalden und die damit verbundenen Drainagewässer eines aktuellen Pb/Zn-Standorts wurden charakterisiert, um mögliche relevante Schadstoffe für die Einleitung zu bestimmen. Über einen Zeitraum von 10 Monaten wurde das Potenzial von Pflanzenkläranlagen für eine geeignete Behandlung der Abwässer bewertet. Die Bergehalden waren leicht alkalisch (pH 8,3), hatten eine hohe Netto-Neutralisierungskapazität (578 kg CaCO3/t), einen sehr hohen Anteil an neutralisierenden Karbonatmineralien (ca. 60 %) und einen geringen Sulfidgehalt (< 5 %). Der Metallgehalt betrug 2430 mg/kg Zn, 1.900 mg/kg Pb, 620 mg/kg As, 80 mg/kg Sb, 50 mg/kg Ni und 30 mg/kg Cr. Die pH-Wert-abhängige Auslaugung zeigte, dass unter sauren Bedingungen (pH < 5) größere Mengen an Metallen freigesetzt werden können, obwohl dies angesichts des sehr hohen Neutralisierungspotentialverhältnisses sehr unwahrscheinlich ist. Die Abwässer waren im Großen und Ganzen neutral (pH 7,7), doch wurden für Sulfat, Sb und Zn Überschreitungen der Grenzwerte der Oberflächenwasserrichtlinie festgestellt. Die Behandlung in Pflanzenkläranlagen erwies sich als wirksam, um die Grenzwerte für Zn und Sb zu erreichen. Die Sulfatwerte blieben hoch und überschritten die Grenzwerte von 250 mg/l. Die Mn-Werte im Ablauf der Pflanzenkläranlage überstiegen die Werte im Zulauf. Eine weitere Evaluierung von Pflanzenkläranlagen als Option zur Behandlung der Abwässern mit neutralem pH-Wert, um ein für die Einleitung geeignetes Niveau zu erreichen, ist gerechtfertigt.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Brookfield AE, Blowes DW, Mayer KU (2006) Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J Contam Hydrol 88:1–22

    Article  Google Scholar 

  • Brough CP, Warrender R, Bowell RJ, Barnes A, Parbhakar-Fox A (2013) The process mineralogy of mine wastes. Miner Eng 52:125–135

    Article  Google Scholar 

  • Callery S, Courtney R (2015) Assessing metal transfer to vegetation and grazers on reclaimed pyritic Zn and Pb tailings. Environ Sci Pollut R 22:19764–19772

    Article  Google Scholar 

  • Cappuyns V, Alian V, Vassilieva E, Swennen R (2014) pH dependent leaching behavior of Zn, Cd, Pb, Cu and As from mining wastes and slags: kinetics and mineralogical control. Waste Biomass Valori 5:355–368

    Article  Google Scholar 

  • CEN/TS 14997 (2005) Characterization of Waste–Leaching Behaviour Tests–Influence of pH on Leaching with Initial Acid/base Addition. CEN, Brussels

  • Chen Y, Wen Y, Zhou Q, Huang J, Vymazal J, Kuschk P (2016) Sulfate removal and sulfur transformation in constructed wetlands: the roles of filling material and plant biomass. Water Res 102:572–581

    Article  Google Scholar 

  • Conesa H, Faz A, Arnaldos R (2007) Initial studies for the phytostabilization of a mine tailing from the Cartagena-La Union Mining District (SE Spain). Chemosphere 66:38–44

    Article  Google Scholar 

  • Courtney R (2013) Mine tailings composition in a historic site: implications for ecological restoration. Environ Geochem Health 35:79–88

    Article  Google Scholar 

  • EN 15875 (2011) Characterization of waste—static test for determination of acid potential and neutralisation potential of sulfidic waste. CEN, Brussels

  • Fernando WAM, Ilankoon IMSK, Syed TH, Yellishetty M (2018) Challenges and opportunities in the removal of sulphate ions in contaminated mine water: a review. Miner Eng 117:74–90

    Article  Google Scholar 

  • Hedin RS (2020) Long-term performance and costs for the Anna S mine passive treatment systems. Mine Water Environ 39:345–355

    Article  Google Scholar 

  • Heikkinen PM, Räisänen ML (2008) Mineralogical and geochemical alteration of Hitura sulphide mine tailings with emphasis on nickel mobility and retention. J Geochem Explor 97:1–20

    Article  Google Scholar 

  • Heikkinen PM, Räisänen ML, Johnson RH (2009) Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage versus neutral mine drainage. Mine Water Environ 28:30–49

    Article  Google Scholar 

  • Higgins D, Curtin T, Courtney R (2017) Effectiveness of a constructed wetland for treating alkaline bauxite residue leachate: a 1-year field study. Environ Sci Pollut R 24:8516–8524

    Article  Google Scholar 

  • Kefeni KK, Msagati TA, Mamba BB (2017) Acid mine drainage: Prevention, treatment options, and resource recovery: a review. J Clean Prod 151:475–493

    Article  Google Scholar 

  • Król A, Mizerna K, Bożym M (2020) An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J Hazard Mater 384:121502

    Article  Google Scholar 

  • Lottermoser BG, Ashley PM (2005) Tailings dam seepage at the rehabilitated Mary Kathleen uranium mine, Australia. J Geochem Explor 85:119–137

    Article  Google Scholar 

  • Matthies R, Aplin AC, Jarvis AP (2010) Performance of a passive treatment system for net-acidic coal mine drainage over five years of operation. Sci Total Environ 408:4877–4885

    Article  Google Scholar 

  • Mayes WM, Batty LC, Younger PL, Jarvis AP, Kõiv M, Vohla C, Mander U (2009) Wetland treatment at extremes of pH: a review. Sci Total Environ 407:3944–3957

    Article  Google Scholar 

  • Milton A, Johnson MS, Cooke JA (2002) Lead within ecosystems on metalliferous mine tailings in Wales and Ireland. Sci Total Environ 299:177–190

    Article  Google Scholar 

  • Mudd GM, Boger DV (2013) The ever growing case for paste and thickened tailings—towards more sustainable mine waste management. J Aust Inst Min Metall 2:56–59

    Google Scholar 

  • Neculita CM, Rosa E (2019) A review of the implications and challenges of manganese removal from mine drainage. Chemosphere 214:491–510

    Article  Google Scholar 

  • O’Sullivan AD, Murray DA, Otte ML (2004) Removal of sulfate, zinc, and lead from alkaline mine wastewater using pilot-scale surface-flow wetlands at Tara Mines, Ireland. Mine Water Environ 23:58–65

    Article  Google Scholar 

  • Palumbo-Roe B, Klinck B, Banks V, Quigley S (2009) Prediction of the long-term performance of abandoned lead zinc mine tailings in a Welsh catchment. J Geochem Explor 100:169–181

    Article  Google Scholar 

  • Parbhakar-Fox A, Lottermoser B (2017) Prediction of sulfidic waste characteristics. In: Lottermoser B (eds), Environmental Indicators in Metal Mining. Springer, Cham. doi.org/https://doi.org/10.1007/978-3-319-42731-7_3

  • Plante B, Benzaazoua M, Bussière B (2011) Predicting geochemical behaviour of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30:2–21

    Article  Google Scholar 

  • S.I. (Statutory Instrument) No. 122 of European Union (Drinking Water) Regulations (2014) Arrangement of Regulations the Stationary Office, Dublin, Ireland (2014). (Available at: www.irishstatutebook.ie/eli/2014/si/122/made/en/pdf, accessed April 22, 2021)

  • Skousen J, Zipper CE, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, Kleinmann RL (2017) Review of passive systems for acid mine drainage treatment. Appl Geochem 36:133–153

    Google Scholar 

  • Stein OR, Borden-Stewart DJ, Hook PB, Jones WL (2007) Seasonal influence on sulfate reduction and zinc sequestration in subsurface treatment wetlands. Water Res 41:3440–3448

    Article  Google Scholar 

  • van der Sloot HA, van Zomeren A (2012) Characterisation leaching tests and associated geochemical speciation modelling to assess long term release behaviour from extractive wastes. Mine Water Environ 31:92–103

    Article  Google Scholar 

  • Vaziri V, Sayadi AR, Mousavi A, Parbhakar-Fox A, Monjezi M (2021) Mathematical modeling for optimized mine waste rock disposal: establishing more effective acid rock drainage management. J Clean Prod 288:125124

    Article  Google Scholar 

  • Vymazal J (2005) Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecol Eng 25:478–490

    Article  Google Scholar 

  • Yang B, Lan CY, Yang CS, Liao WB, Chang H, Shu WS (2006) Long-term efficiency and stability of wetlands for treating wastewater of a lead/zinc mine and the concurrent ecosystem development. Environ Pollut 143:499–512

    Article  Google Scholar 

  • Younger PL (2000) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water Environ 19:84–97

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Courtney.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fitzsimons, O., Courtney, R. Characterisation of Pb/Zn Tailings and Drainage Waters to Inform Post-Closure Water Treatment Strategies. Mine Water Environ 41, 1118–1123 (2022). https://doi.org/10.1007/s10230-022-00898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00898-z

Keywords

Navigation