Skip to main content

Water Inrush Modes Through a Thick Aquifuge Floor in a Deep Coal Mine and Appropriate Control Technology: A Case Study from Hebei, China

深部矿井厚隔水层底板突水模式及防治技术: 案例研究

Typisierung der Wassereinbrüche durch einen mächtigen Liegendstauer in einem tiefen Kohlebergwerk und geeignete Kontrolltechnik: Eine Fallstudie aus Hebei, China

Modos de irrupción de agua a través de un suelo acuífugo grueso en una mina de carbón profunda y tecnología de control adecuada: Un estudio de caso en Hebei, China

Abstract

Water inrush disasters caused by confined aquifers under high pressure below the mine floor are a major problem in China, restricting the safe and efficient mining of deep coal seams. We have classified the stress disturbance modes acting on the floor area in such mines into two types based on the water yield changes of a thick aquifuge floor in a deep longwall mine and the underground pressure behavior of deep longwall faces during water inrush events, and they are the dynamic load of the main roof instability from the far field of the longwall face and the static load of the abutment pressure from the near field, respectively. The water inrush modes include mining-induced cracks indirectly connected with the Ordovician limestone aquifer and through-going faults directly connected with the same aquifer. In order to control water inrush from thick aquifuge floor, grout was used to block off the cracks in the strata just above the Ordovician limestone on the site; decreasing the mining width also decreased the stress disturbance intensity caused by the dynamic and static loads; while presplitting the roof relieved the underground pressure and effectively weakened the dynamic load; and the confined water was drained to lower the water pressure and cut off the source of water flowing into the longwall face. Finally, the combined effectiveness of these control technologies was verified by micro-seismic monitoring, and further water inrush disasters were prevented through the thick aquifuge floor of a deep longwall mine in the Xing-dong coal mine in north China.

摘要

煤层底板下伏高压含水层突水灾害是制约中国深部煤层安全和高效开采的主要问题。根据大采深长壁开采矿井厚隔水层底板突水量的变化和突水期间大采深长壁工作面的矿山压力行为, 将作用于此类矿井的底板应力扰动模式划分为两类,分别为长壁工作面远场基本顶失稳的动载荷和近场支承压力的静载荷。突水模式包括采动裂隙间接连通奥陶系石灰岩含水层和贯穿断层直接连通奥灰含水层。为了防控深部开采厚隔水层底板突水,现场应用注浆技术用封堵了奥陶系石灰岩以上地层的裂隙;减小开采宽度也降低了动、静载荷引起的应力扰动强度; 顶板预裂缓解了矿山压力并有效地削弱了动载荷; 且疏水降低了承压含水层水压,切断了流入长壁工作面的水源。最后,微震监测验证了这些综合控制技术的有效性,进一步预防了中国华北地区邢东煤矿深部长壁开采厚隔水层底板的突水灾害发生。

Zusammenfassung

Die Gefahr von Wassereinbrüchen aus gespannten Grundwasserleitern ist in China ein großes Problem, das den sicheren und effizienten Abbau von tiefen Kohleflözen einschränkt. Die auf die Sohlplatte solcher Bergwerke einwirkenden Spannungsstörungen wurden in zwei Kategorien klassifiziert. Sie basieren auf den Volumenströmen an der Sohle von mächtigen Grundwasserleitern in tiefen Strebbauwerken und dem Druckverhalten in der Strebausbaugrube bei Wassereinbrüchen. Die Arten der Beanspruchung, die auf diese tiefen Sohlenbereiche einwirken, sind dynamische Lasten aus der Destabilisierung der Hauptdecke im Fernfeld des Strebes und statische Lasten aus dem Widerlagerdruck im Nahfeld. Zu den Mustern der Wassereinbrüche gehören bergbaubedingte Brüche, die indirekt mit dem ordovizischen Kalkstein-Grundwasserleiter verbunden sind, und durchgängige Verwerfungen, die direkt mit demselben Grundwasserleiter verbunden sind. In den hangenden Schichten des ordovizischen Kalksteins wurde Mörtel zum Verschließen von Rissen verwendet. Die Verringerung der Abbaubreite verringerte die Intensität der durch dynamische und statische Lasten verursachten Spannungsstörungen, während die vorgerissene Decke den Untergrunddruck entlastete und die dynamischen Lasten wirksam abschwächte. Schließlich wurde das eingeschlossene Wasser abgelassen, um den Wasserdruck zu verringern und den Wasserfluss zum Streb zu unterbrechen. Die kombinierte Wirksamkeit dieser Kontrolltechnologien wurde durch ein mikroseismisches Monitoring verifiziert und verhinderte weitere Wassereinbrüche durch den dicken liegenden Stauer im tiefen Streb des Xingdong-Kohlebergwerks in Nordchina.

Resumen

Las catástrofes causadas por acuíferos confinados a alta presión bajo el suelo de la mina son un problema importante en China, lo que limita la seguridad y la eficacia de la explotación de los filones de carbón profundos. Hemos clasificado los modos de perturbación de la tensión que actúan en la zona del suelo en dichas minas en dos tipos, basados en los cambios de rendimiento del agua de un suelo acuífero grueso en una mina de tajo largo profunda y en el comportamiento de la presión subterránea de los frentes de tajo largo profundos durante los eventos de entrada de agua. Los modos de perturbación de la tensión que actúan sobre la zona del suelo en estas minas de carbón profundas son la carga dinámica de la inestabilidad del techo principal desde el campo lejano del frente de tajo largo y la carga estática de la presión del estribo desde el campo cercano. Los modos de entrada de agua incluyen las grietas inducidas por la minería, conectadas indirectamente con el acuífero de caliza del Ordovícico, y las fallas pasantes, conectadas directamente con el mismo acuífero. Se utilizó lechada para bloquear las grietas en los estratos situados justo por encima de la caliza del Ordovícico. La disminución de la anchura de extracción también redujo la intensidad de la perturbación de la tensión causada por las cargas dinámicas y estáticas, mientras que la subdivisión del techo alivió la presión subterránea y debilitó eficazmente la carga dinámica. Por último, se drenó el agua confinada para reducir la presión del agua y cortar la fuente de agua que fluía hacia el frente de tajo largo. La eficacia combinada de estas tecnologías de control se verificó mediante la monitorización microsísmica y se evitaron nuevos desastres de entrada de agua a través del grueso suelo acuífero de una mina de tajo largo profunda en la mina de carbón de Xing-dong, en el norte de China.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  • Chen B, Zhang S, Li Y, Li Z, Zhou H (2020) Physical simulation study of crack propagation and instability information discrimination of rock-like materials with faults. Arab J Geosci 13:966

    Article  Google Scholar 

  • Hu W, Zhao C (2021) Evolution of water hazard control technology in China’s coal mines. Mine Water Environ 40:334–344

    Article  Google Scholar 

  • Huang Z, Jiang Z, Tang X, Wu X, Guo D, Yue Z (2016) In situ measurement of hydraulic properties of the fractured zone of coal mines. Rock Mech Rock Eng 49:603–609

    Article  Google Scholar 

  • Li H, Bai H (2020) Simulation research on the mechanism of water inrush from fractured floor under the dynamic load induced by roof caving: taking the Xinji second coal mine as an example. Arab J Geosci 12:466

    Article  Google Scholar 

  • Li P, Li A, Wang X (2012) The comprehensive water control technology in the coal floor limestone high confined aquifer. Adv Mater Res 518–523:4283–4287

    Article  Google Scholar 

  • Li Z, Feng G, Zhai C (2016) Study on “triangle” water-inrush mode of strong water-guide collapse column. J Central South Univ 23:2402–2409

    Article  Google Scholar 

  • Li A, Ma Q, Lian Y, Ma L, Mu Q, Chen J (2020) Numerical simulation and experimental study on floor failure mechanism of typical working face in thick coal seam in Chenghe mining area of Weibei, China. Environ Earth Sci 79:118

    Article  Google Scholar 

  • Liang Z, Song W, Liu W (2020) Theoretical models for simulating the failure range and stability of inclined floor strata induced by mining and hydraulic pressure. Int J Rock Mech Min Sci 132:104382

    Article  Google Scholar 

  • Liu Y, Xia Y, Lu H, Xiong Z (2019) Risk control technology for water inrush during the construction of deep, long tunnels. Math Prob Eng. https://doi.org/10.1155/2019/3070576

    Article  Google Scholar 

  • Lu H, Liang X, Shan N, Zhang Y (2018) Study on the stability of the coal seam floor above a confined aquifer using the structural system reliability method. Geofluids. https://doi.org/10.1155/2018/9580271

    Article  Google Scholar 

  • Mu W, Wu X, Deng R, Hao Q, Qian C (2020) Mechanism of water inrush through fault zones using a coupled fluid–solid numerical model: a case study in the Beiyangzhuang coal mine, northern China. Mine Water Environ 39:380–396

    Article  Google Scholar 

  • Sun J, Wang L, Hu Y (2019) Mechanical criteria and sensitivity analysis of water inrush through a mining fault above confined aquifers. Arab J Geosci 12:4

    Article  Google Scholar 

  • Wu J, Jiang Z, Zhai X (2011) Research on controlling of rock mass structure on water inrush from coal seam floor in Huaibei mining area. 1st International Symp on Mine Safety Science and Engineering. Proc Eng 26:343–350

    Article  Google Scholar 

  • Xiao L, Wu Q, Niu C, Dai G, Wang S, Ren D, Luo S (2020) Application of a new evaluation method for floor water inrush risk from the Ordovician fissure confined aquifer in Xiayukou coal mine, Shanxi, China. Carbonates Evaporite 35:97

    Article  Google Scholar 

  • Xu Y, Yang Y (2013) Applicability analysis on statistical formula for failure depth of coal seam floor in deep mine. Coal Sci Technol 41(9):129–132 ([in Chinese])

    Google Scholar 

  • Xu Y, Zhang E, Luo Y, Zhao L, Yi K (2020) Mechanism of water inrush and controlling techniques for fault-traversing roadways with floor heave above highly confined aquifers. Mine Water Environ 39:320–330

    Article  Google Scholar 

  • Yin S, Zhang J, Liu D (2015) A study of mine water inrushes by measurements of in situ stress and rock failures. Nat Hazards 79:1961–1979

    Article  Google Scholar 

  • Yin L, Ma K, Chen J, Xue Y, Wang Z, Cui B (2019) Mechanical model on water inrush assessment related to deep mining above multiple aquifers. Mine Water Environ 38:827–836

    Article  Google Scholar 

  • Yu H, Zhu S, Xie H, Hou J (2020) Numerical simulation of water inrush in fault zone considering seepage paths. Nat Hazards 104:1763–1779

    Article  Google Scholar 

  • Zhai J, Liu D, Li G, Wang F (2019) Floor failure evolution mechanism for a fully mechanized longwall mining face above a confined aquifer. Adv Civ Eng. https://doi.org/10.1155/2019/8036928

    Article  Google Scholar 

  • Zhang J (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360

    Article  Google Scholar 

  • Zhao J, Chen J, Zhang X, Jiang N, Zhang Y (2020) Distribution characteristics of floor pore water pressure based on similarity simulation experiments. Bull Eng Geol Environ 79:4805–4816

    Article  Google Scholar 

  • Zou G, Hou S, Zhang K, Yin C (2010) Integrated water control technology for limestone water-inrush from coal floor fissures. In: Proc 2nd international conf on mine hazards prevention and control, vol 12. Atlantis Press, pp 379-388

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51904303), the Science and Technology Innovation Venture Capital Special Project of China Coal Research Institute (2021-KXYJ-004), and the Science and Technology Innovation Venture Capital Special Project of China Coal Technology & Engineering Group (2020-2-ZD001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Chunyuan Li or Jianping Zuo.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, C., Zuo, J., Huang, X. et al. Water Inrush Modes Through a Thick Aquifuge Floor in a Deep Coal Mine and Appropriate Control Technology: A Case Study from Hebei, China. Mine Water Environ (2022). https://doi.org/10.1007/s10230-022-00891-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10230-022-00891-6

Keywords

  • Water inrush
  • Stress disturbance
  • Control technology
  • Thick aquifuge floor
  • Deep longwall mining