Skip to main content

A Study of a Hypersaline, Heliothermic Lake that Formed in an Anthropogenic-Karst Sinkhole

Studie über einen hypersalinen, heliothermen See, der sich in einer anthropogen verursachten Doline gebildet hat

Estudio de un lago hipersalino y heliotérmico que se formó en un sumidero antropogénico- cárstico

超咸水组成和受太阳加热的人类活动而成喀斯特天坑湖研究

Abstract

In Solotvino, in southwestern Ukraine (Transcarpathia), there is a large group of anthropogenic water reservoirs. Most of these developed in sinkholes formed by the flooding of salt mines and the activation of anthropogenic and karst processes. One reservoir, Solotvino No. 7, was the subject of detailed limnological (hydrographic and hydrochemical) studies. The reservoir has an area of 8493 m2, a maximum depth of 20.5 m, and holds Cl–Na+ brines. The water in the near-surface layer is hyposaline (3–20 g/L), but periodically becomes mesosaline (20–50 g/L). Hypersaline waters with mineralization > 250 g/L are found below 3 m. The reservoir has three persistent distinct mixolimnion layers that clearly indicate their meromictic type: the surface layer, a chemocline (where the water chemistry changes), and a lower monimolimnion layer. The thermal properties of the reservoir deserve special attention. The water is heated during all seasons at the boundary between the chemocline and monimolimnion; the water temperature is 32 °C in winter and 54 °C in summer, despite the lack of volcanism. The water is heated by a physical phenomenon in the layer where the water density increases, which is a heliothermal process. Also noteworthy is that throughout the year, the oxygen profiles are positive and heterograde, with the water being up to 380% oxygen saturated.

抽象的

在乌克兰西南部 (外喀尔巴阡Transcarpathia) 索洛特维诺 (Solotvino), 有大量人类活动形成的水库。这些水库多发育于盐矿矿井淹没或人类活化岩溶而形成的天坑。其中, 索洛特维诺7号 (Solotvino No. 7) 水库已经历详细的湖泊学 (水文学和水化学) 研究。湖库面积8493 m2, 最大深度20.5 m, 容纳Cl – Na+咸水。虽然湖的近表层水为低盐水 (3–20 g/L), 但是它会周期性地变成中咸水 (20–50 g/L) 。矿化度大于250g/L的超咸水在3m以下。水库持续存在三个明显的混成层, 清楚地表明了湖水的半对流类型组成: 浅表层、化变层 (水化学性质变化的层段) 和更深的永滞层。水库的热学属性值得特别注意。即使没有火山活动, 化变层和永滞层之间的水被四季加热, 冬季水温32℃, 夏季水温54℃。密度增大水层被一种物理现象加热, 这是一种日光加热过程。另一值得关注现象是, 湖水溶氧曲线在整个一年中呈正向和跃变, 氧气饱和度高达380%。

Zusammenfassung

In Solotvino, im Südwesten der Ukraine (Transkarpatien), gibt es eine große Gruppe von anthropogenen Wasserspeichern. Die meisten von ihnen sind in Dolinen entstanden, die durch die Flutung von Salzbergwerken und die Aktivierung von anthropogenen und natürlichen Karstprozessen entstanden sind. Ein Stausee, Solotvino Nr. 7, war Gegenstand eingehender limnologischer (hydrographischer und hydrochemischer) Untersuchungen. Der Stausee hat eine Fläche von 8.493 m2, eine maximale Tiefe von 20,5 m und enthält Cl-Na+-Sole. Das Wasser in der oberflächennahen Schicht ist hyposalin (3–20 g/l), geht aber zeitweise in mesosalin (20–50 g/l) über. Hypersalines Wasser mit einer Mineralisierung von mehr als 250 g/l findet sich unterhalb von 3 m. Das Reservoir hat drei anhaltend ausgeprägte Mixolimnion-Schichten, die eindeutig auf ihren meromiktischen Typ hinweisen: die Oberflächenschicht, eine Chemokline (wo sich die Wasserchemie ändert) und eine untere Monimolimnion-Schicht. Die thermischen Eigenschaften des Stausees verdienen besondere Aufmerksamkeit. An der Grenze zwischen Chemokline und Monimolimnion ist das Wasser zu allen Jahreszeiten erwärmt; die Wassertemperatur beträgt im Winter 32 °C und im Sommer 54 °C, obwohl es keinen Vulkanismus gibt. Die Erwärmung des Wassers erfolgt durch ein physikalisches Phänomen in der Schicht, in der die Wasserdichte zunimmt, also durch einen heliothermischen Prozess. Bemerkenswert ist auch, dass die Sauerstoffprofile das ganze Jahr über positiv und heterograd sind, wobei das Wasser bis zu 380% mit Sauerstoff gesättigt ist.

Resumen

En Solotvino, en el suroeste de Ucrania (Transcarpacia), hay un gran grupo de depósitos de agua antropogénicos. La mayoría de ellos se desarrollaron en sumideros formados por la inundación de minas de sal y la activación de procesos antropogénicos y cársticos. Uno de los embalses, el Solotvino nº 7, fue objeto de estudios limnológicos (hidrográficos e hidroquímicos) detallados. El embalse tiene una superficie de 8.493 m2, una profundidad máxima de 20,5 m y contiene salmueras de Cl-Na + . El agua de la capa cercana a la superficie es hiposalina (3–20 g/L), pero periódicamente se convierte en mesosalina (20–50 g/L). Las aguas hipersalinas con mineralización > 250 g/L se encuentran por debajo de los 3 m. El embalse tiene tres capas de mixolimnion distintas y persistentes que indican claramente su tipo meromítico: la capa superficial, una quimoclina (donde cambia la química del agua) y una capa inferior de monimolimnion. Las propiedades térmicas del embalse merecen especial atención. El agua se calienta durante todas las estaciones en el límite entre la quimoclina y el monimolimnion; la temperatura del agua es de 32 °C en invierno y de 54 °C en verano, a pesar de la ausencia de vulcanismo. El agua se calienta por un fenómeno físico en la capa donde aumenta la densidad del agua, que es un proceso heliotérmico. También cabe destacar que, a lo largo del año, los perfiles de oxígeno son positivos y heterógrados, estando el agua saturada de oxígeno hasta en un 380%.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4 “
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  • Alexe M, Serban G (2014) The evolution of heliotherm phenomenon in the karstosaline Lake Ursu from Sovata, Romania. Carpathian J Earth Environ Sci 9(2):103–111

    Google Scholar 

  • Andrejchuk V (2002) Collapse above the world’s largest potash mine (Ural, Russia). Int J Speleol 31(1/4):137–158

    Article  Google Scholar 

  • Blanchette ML, Lund MA (2016) Pit lakes are a global legacy of mining: an integrated approach to achieving sustainable ecosystems and value for communities. Curr Opin Environ Sustain 23:28–34. https://doi.org/10.1016/j.cosust.2016.11.012

    Article  Google Scholar 

  • Boehrer B, Schultze M (2006) On the relevance of meromixis in mine pit lakes. In: Barnhisel RI (ed) Proc 7th international conf on acid rock drainage (ICARD). American Soc of Mining and Reclamation, pp 200–213

  • Boehrer B, von Rohden C, Schultze M (2017) Physical features of meromictic lakes: stratification and circulation. In: Gulati RD, Zadereev ES, Degermendzhi AG (eds) Ecology of meromictic lakes ecological studies, vol 228. Springer, Berlin, pp 15–34

    Chapter  Google Scholar 

  • Castendyk DN, Eary LE, Balistrieri LS (2015a) Modeling and management of pit lake water chemistry 1: theory. Appl Geochem 57:267–288

    Article  Google Scholar 

  • Castendyk DN, Balistrieri LS, Gammons C, Tucci N (2015b) Modeling and management of pit lake water chemistry 2: case studies. Appl Geochem 57:289–307

    Article  Google Scholar 

  • Choiński A (2000) Jeziora kuli ziemskiej, Wydawnictwo Naukowe PWN, Warszawa [in Polish]

  • Chonka Y, Lemko I, Sichka M, Buleza B, Yarosh V, Tzoma I, Sharkan I, Shevchuk A (2013) Physico-chemical and microbiological monitoring of Solotvino salt lakes. Balneo Res J 4(3):115–120

    Article  Google Scholar 

  • Czop M, Motyka J, Sracek O, Suwarzyński M (2011) Geochemistry of the hyperalkaline Gorka pit lake (pH > 13) in the Chrzanow Region, southern Poland. Water Air Soil Pollut 214:423–434. https://doi.org/10.1007/s11270-010-0433-x

    Article  Google Scholar 

  • Diakiv V (2012) Conformities to the law of development of tekhnogenic activated salt karst in the process of submergence of 515 mines no 8 and no 9 of the Solotvinsky saltmine. In: Collection of scientific studies of Lesya Ukrainka Eastern European National University of Voliny-no. 9. Nature of Western Polesie and surrounding areas. Lutsk, pp 69–79. http://esnuir.eenu.edu.ua/handle/123456789/220 [in Ukrainian]

  • Durica D, Holy M, Suk M (2008) Clovek jako geologicky cinitel. Moravskie zemskie Muzeum, Brno, ISBN 978-80-7028-331-8 [in Czech]

  • Górniak A, Kajak Z (2020) Hydrobiologia—limnologia. Wydawnictwo Naukowe PWN, Warszawa [in Polish]

  • Gutry-Korycka M, Werner-Więckowska H (1996) Przewodnik do hydrograficznych badań terenowych, Wydawnictwo Naukowe PWN, Warszawa [in Polish]

  • Hammer UT (1986) Saline lake ecosystems of the world. Monogr Biol, Springer Dordrecht 59:174. ISBN 978-90-6193-535-3

  • Hongve D (2002) Seasonal mixing and genesis of endogenic meromixis in small lakes in southeast Norway. Nord Hydrol 33(2–3):189–206

    Article  Google Scholar 

  • Hrdinka T, Šobr M, Fott J, Nedbalová L (2013) The unique environment of the most acidified permanently meromictic lake in the Czech Republic. Limnologica 43:417–426. https://doi.org/10.1016/j.limno

    Article  Google Scholar 

  • Hull JR (1979) Physics of the solar pond. PhD Disser. Iowa State University, Ames, Iowa

    Google Scholar 

  • Macioszczyk A, Dobrzyński D (2002) Hydrogeochemia. Wydawnictwo Naukowe PWN, Warszawa [in Polish]

  • McColl RHS, Forsyth DJ (1973) The limnology of a thermal lake: Lake Rotowhero, New Zealand: I. General Description and Water Chemistry. Hydrobiologia 43:313–332. https://doi.org/10.1007/BF00015354

    Article  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Dołęgowska S (2018a) Stable isotope geochemistry of acid mine drainage from the Wiśniówka area (south-central Poland). Appl Geochem 95:45–56

    Article  Google Scholar 

  • Migaszewski ZM, Gałuszka A, Dołęgowska S (2018b) Arsenic in the Wiśniówka acid mine drainage area (south-central Poland)—mineralogy, hydrogeochemistry, remediation. Chem Geol 493:491–503

    Article  Google Scholar 

  • Molenda T (2014) Impact of saline mine water: development of a meromictic reservoir in Poland. Mine Water Environ 33:327–334. https://doi.org/10.1007/s10230-014-0262-z

    Article  Google Scholar 

  • Molenda T (2015) Conditions for development of anthropogenic meromictic reservoirs in the workings of crystalline rocks (based on the examples of the quarries of the Žulovská pahorkatina, NE Czech Republic). Environ Earth Sci 74:2259–2271. https://doi.org/10.1007/s12665-015-4217-x

    Article  Google Scholar 

  • Molenda T (2018) Impact of a saline mine water discharge on the development of a meromictic pond, the Rontok Wielki Reservoir, Poland. Mine Water Environ 37:807–814. https://doi.org/10.1007/s10230-018-0544-y

    Article  Google Scholar 

  • Molenda T, Kidawa J (2020) Natural and anthropogenic conditions of the chemical composition of pit lake waters (based on example pit lakes from central Europe). Mine Water Environ 39:473–480. https://doi.org/10.1007/s10230-020-00660-3

    Article  Google Scholar 

  • Mycielska-Dowgiałło E, Korotaj-Kokoszczyńska M, Smolska E, Rutkowski J (2001) Geomorfologia dynamiczna i stosowana. Wydział Geografii Uniwersytetu Warszawskiego, Warszawa [in Polish]

  • Pulina M (1999) Kras – formy i procesy. Wydawnictwo Uniwersytetu Śląskiego, Katowice [in Polish]

  • Rzętała M (2008) Funkcjonowanie zbiorników wodnych oraz przebieg procesów limnicznych w warunkach zróżnicowanej antropopresji na przykładzie regionu górnośląskiego. Wydawnictwo Uniwersytetu Śląskiego, Katowice [in Polish]

  • Sanchez-España J, Pamo EL, Pastor ES, Ercilla MD (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287

    Article  Google Scholar 

  • Sanchez-España J, Yusta I, Ilin A, van der Graaf Ch, Sanchez-Andrea I (2020a) Microbial geochemistry of the acidic saline pit lake of Brunita Mine (La Unión, SE Spain). Mine Water Environ 39:535–555

    Article  Google Scholar 

  • Sanchez-España J, Yusta I, Boehrer B (2020b) Degassing pit lakes: technical issues and lessons learnt from the HERCO2 Project in the Guadiana open pit (Herrerías Mine, SW Spain). Mine Water Environ 39:517–534

    Article  Google Scholar 

  • Stoeckl L, Banks V, Stella Shekhunova S, Yakovlev Y (2020) The hydrogeological situation after salt-mine collapses at Solotvyno, Ukraine. J Hydrol Reg Stud 30:100701. https://doi.org/10.1016/j.ejrh.2020.100701

    Article  Google Scholar 

  • Vandenberg J, Litke S (2018) Beneficial use of springer pit lake at Mount Polley Mine. Mine Water Environ 37:663–672. https://doi.org/10.1007/s10230-017-0504-y

    Article  Google Scholar 

  • Weinberger H (1964) The physics of the solar pond. Sol Energy 8(2):45–56

    Article  Google Scholar 

  • Żurek R, Diakiv V, Szarek-Gwiazda E, Kosiba J, Wojtal AZ (2018) Unique pit lake created in an opencast potassium salt mine (Dombrovska pit lake in Kalush, Ukraine). Mine Water Environ 37:456–469. https://doi.org/10.1007/s10230-018-0527-z

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanna Kidawa.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Molenda, T., Kidawa, J. A Study of a Hypersaline, Heliothermic Lake that Formed in an Anthropogenic-Karst Sinkhole. Mine Water Environ 41, 817–827 (2022). https://doi.org/10.1007/s10230-022-00887-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00887-2

Keywords

  • Mining water
  • Hydrochemical type of water
  • Water pollution
  • Salinity
  • Meromixis