Skip to main content

An Optimized Combination of Mine Water Control, Treatment, Utilization, and Reinjection for Environmentally Sustainable Mining: A Case Study

Fallstudie zu einer optimierten Kombination aus Grubenwasserüberwachung, -aufbereitung, -nutzung und -wiedereinleitung für einen ökologisch nachhaltigen Bergbau

Una combinación optimizada de control, tratamiento, utilización y reinyección del agua de mina para una minería ambientalmente sostenible: un estudio de caso

采用矿井水控制、处理、利用和回灌的优化组合实现矿山环境可持续开采:案例研究

Abstract

This paper presents a case study of an optimized combination of mine water control, treatment, utilization and reinjection to achieve the zero discharge of mine water. Mine water has been considered a hazard and pollution source during underground mining, so most mining enterprises directly discharge mine water to the surface after simple treatment, resulting in a serious waste of water. Moreover, discharging a large amount of mine water can destroy the original groundwater balance and cause serious environmental problems, such as surface subsidence, water resource reduction and contamination, and adverse impacts on biodiversity. The Zhongguan iron mine is in the major groundwater source area of the Hundred Springs of Xingtai, which is an area with a high risk of potential subsidence. To optimize the balance between mining and groundwater resources, a series of engineering measures was adopted by the Zhongguan iron mine to realize mine water control, treatment, utilization, and reinjection. The installation of a closed grout curtain has greatly reduced the water yield of deep stopes in the mine; the effective sealing efficiency reaches 80%. Nanofiltration membrane separation was adopted to treat the highly mineralized mine water; the quality of the produced water meets China’s recommended class II groundwater standard. Low-grade heat energy from the mine water is collected and utilized through a water-source heat pump system. Finally, zero mine water discharge is realized through mine water reinjection. This research provides a beneficial reference for mines with similar geological and hydrogeological conditions to achieve environmentally sustainable mining.

Zusammenfassung

Es wird eine Untersuchung über eine optimierte Kombination aus Grubenwasserüberwachung, -aufbereitung, -nutzung und -wiedereinleitung vorgestellt, mit der die Ableitung von untertägigem Grubenwasser vollständig vermieden werden soll. Da Grubenwasser im Untertagebau als Gefahren- und Verschmutzungsquelle gilt, leiten die meisten Bergbauunternehmen das Untertage anfallende Wasser nach einer einfachen Behandlung direkt an die Oberfläche, was zu einer erheblichen Wasserverschwendung führt. Darüber hinaus kann die Ableitung großer Mengen an Grubenwasser den ursprünglichen Grundwasserhaushalt so beeinflussen, dass schwerwiegende Umweltprobleme entstehen können, z. B. Bodensenkungen, Verringerung der Wasserressourcen, Wasserverschmutzung sowie negative Auswirkungen auf die Artenvielfalt. Das Eisenbergwerk Zhongguan liegt im wichtigen Grundwasserquellgebiet der “Hundert Quellen von Xingtai”, einem Gebiet mit einem hohem Risiko für Grundwasserabsenkungen. Um die Grundwasserhaushalt durch die bergbauliche Tätigkeiten nicht zu gefährden, hat das Eisenbergwerk Zhongguan eine Reihe von technischen Maßnahmen zur Überwachung, Aufbereitung, Nutzung und Wiedereinleitung des Grubenwassers ergriffen. Die Errichtung einer geschlossenen Zementwand hat die in die tiefen Grubenbaue eindringende Wassermenge erheblich reduziert. Die Abdichtungseffizienz erreicht bis zu 80 %. Zur Aufbereitung des stark mineralisierten, untertägigen Grubenwassers wurden Nanofiltrationstechniken eingesetzt. Die Wasserqualität nach der Reinigung entspricht dem in China empfohlenen Grundwasserstandard der Klasse II. Zusätzlich wird Wärmeenergie aus dem Grubenwasser gewonnen und über ein Wasser-Wasser-Wärmepumpensystem genutzt. Die Ableitung von Grubenwasser wird dadurch vermieden, dass das Abwasser vollständig wieder reinjiziert wird. Diese Forschungsarbeit stellt eine nützliche Referenz für Bergwerke mit ähnlichen geologischen und hydrogeologischen Verhältnissen dar. Die Maßnahmen ermöglichen einen ökologisch nachhaltigen Bergbau.

Resumen

Este artículo presenta un estudio de caso sobre una combinación optimizada de control, tratamiento, utilización y reinyección de las aguas de mina para lograr el vertido cero de las mismas. El agua de mina se ha considerado un peligro y una fuente de contaminación de la minería subterránea, por lo que la mayoría de las empresas mineras vierten directamente el agua de la mina a la superficie tras un simple tratamiento, lo que supone un grave desperdicio de agua. Además, el vertido de una gran cantidad de agua de mina puede destruir el equilibrio original de las aguas subterráneas y causar graves problemas medioambientales, como el hundimiento de la superficie, la reducción y la contaminación de los recursos hídricos y los impactos adversos sobre la biodiversidad. La mina de hierro de Zhongguan se encuentra en la principal zona de origen de las aguas subterráneas de los Cien Manantiales de Xingtai, que es una zona con un alto riesgo de hundimiento potencial. Para optimizar el equilibrio entre la minería y los recursos de aguas subterráneas, la mina de hierro de Zhongguan adoptó una serie de medidas de ingeniería para realizar el control, el tratamiento, la utilización y la reinyección del agua de la mina. La instalación de una cortina de lechada cerrada ha reducido en gran medida el rendimiento de las aguas de los pozos profundos de la mina; la eficacia del sellado alcanza el 80%. Se adoptó la separación por membranas de nanofiltración para tratar el agua de mina altamente mineralizada; la calidad del agua producida cumple la norma de aguas subterráneas de clase II recomendada en China. La energía térmica de baja calidad del agua de la mina se recoge y se utiliza a través de un sistema de bomba de calor de agua. Por último, la reinyección del agua de la mina permite evitar su vertido. Esta investigación proporciona una referencia beneficiosa para que las minas con condiciones geológicas e hidrogeológicas similares logren una minería ambientalmente sostenible.

摘要

介绍了一个采用矿井水控制、处理、利用和回灌的优化组合方法实现矿井水地表零排放的案例。矿井水一直被视为井下开采的危险源和污染源,大多数矿山企业将简单处理后的矿井水直接排放到地表,造成了严重的水资源浪费。此外,矿井水的大量排放会破坏地下水平衡,引起严重的环境问题,如地面沉降、水资源枯竭与污染以及对生物多样性的负面影响。中关铁矿位于邢台市地下水水源地百泉泉域内,该区潜在地面沉降风险很高。为了优化采矿与地下水资源保护之间的平衡,中关铁矿采取了系列工程措施,实现了矿井水控制、处理、利用和回灌。建造封闭式注浆帷幕大幅度降低了矿井深部采场的涌水量,封堵率达到了80%。采用纳滤膜分离技术处理高矿化度矿井水,处理后的水质符合中国推荐的II类级地下水标准。通过水源热泵系统收集和利用了矿井水中赋存的低品位热能。最后,通过矿井水回灌实现了地表的零排放。研究结果为类似地质和水文地质条件的矿山实现环境可持续开采提供了有益参考。

This is a preview of subscription content, access via your institution.

Fig. 1

modified from Herrera-García et al. 2021). The color scale indicates the probability intervals classified from very low (VL) to very high (VH) for every 30 arc sec resolution pixel (1 km by 1 km at the equator). The white hatched polygons indicate countries where groundwater data are unavailable, and the potential subsidence includes information on only the susceptibility. b Location of the Zhongguan iron mine, Xingtai city, Hebei, China. c Regional tectonic outline map

Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  • Baquero JC, Reyes MJ, Custodio E, Scheiber L, Vázquez-Suñé E (2016) Groundwater management in mining: the drainage and reinjection system in Cobre Las Cruces. Spain Mod Environ Sci Eng 2(10):631–646

    Article  Google Scholar 

  • Chen W, Li W, Wang Q, Qiao W (2021) Evaluation of groundwater inflow into an iron mine surrounded by an imperfect grout curtain. Mine Water Environ 40(2):520–538

    Article  Google Scholar 

  • Chen G, Xu ZM, Sun YJ, Sui WH, Li X, Zhao XM, Liu Q (2022) Mine water deep transfer and storage. J Clean Prod 332:129848

    Article  Google Scholar 

  • Chen G (2020) Study on the deep transfer and storage mechanism of mine water in the eastern margin of Ordos basin. China University of Mining and Technology, Xuzhou, pp 129–138 (in Chinese, with abstract in English)

  • Chua KJ, Chou SK, Yang WM (2010) Advances in heat pump systems: a review. Appl Energy 87(12):3611–3624

    Article  Google Scholar 

  • Dharmappa HB, Wingrove K, Sivakumar M, Singh R (2000) Wastewater and stormwater minimisation in a coal mine. J Clean Prod 8(1):23–34

    Article  Google Scholar 

  • Grant SB, Saphores JD, Feldman DL, Hamilton AJ, Fletcher TD, Cook PLM, Stewardson M, Sanders BF, Levin LA, Ambrose RF, Deletic A, Brown R, Jiang SC, Rosso D, Cooper WJ, Marusic I (2012) Taking the “waste” out of “wastewater” for human water security and ecosystem sustainability. Science 337(6095):681–686

    Article  Google Scholar 

  • Gu D (2015) Theory framework and technological system of coal mine underground reservoir. J Chin Coal Soc 40(2):239–246 (in Chinese with abstract in English)

    Google Scholar 

  • Guo J, Ma L, Zhang D (2019) Management and utilization of high-pressure floor-confined water in deep coal mines. Mine Water Environ 38:780–797

    Article  Google Scholar 

  • Han G, Yuan S (2019) Key technologies of comprehensive treatment of mine water in water-rich mines. China University of Geosciences Press, Wuhan (in Chinese)

    Google Scholar 

  • Han G, Yu T, Liu D, Jiang P, Wang Q, Tang Y (2009) Effect evaluation and cross-well resistivity technology for the deep-hole curtain grouting in the Zhongguan iron mine. Geol Surv Res 32(1):69–74

    Google Scholar 

  • Herrera-García G, Ezquerro P, Tomás R, Béjar-Pizarro M, López-Vinielles J, Rossi M, Mateos RM, Carreón-Freyre D, Lambert J, Teatini P, Cabral-Cano E, Erkens G, Galloway D, Hung WC, Kakar N, Sneed M, Tosi L, Wang H, Ye S (2021) Mapping the global threat of land subsidence. Science 371(6254):34–36

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1–2):3–14

    Article  Google Scholar 

  • Kaya E, Zarrouk SJ, O’Sullivan MJ (2011) Reinjection in geothermal fields: a review of worldwide experience. Renew Sust Energ Rev 15(1):47–68

    Article  Google Scholar 

  • Kurbiel J, Balcerzak W, Rybicki SM, Świst K (1996) Selection of the best desalination technology for highly saline drainage water from coal mines in southern Poland. Desalination 106(1–3):415–418

    Article  Google Scholar 

  • Lambert DC, McDonough KM, Dzombak DA (2004) Long-term changes in quality of discharge water from abandoned underground coal mines in Uniontown Syncline, Fayette County, PA, USA. Water Res 38(2):277–288

    Article  Google Scholar 

  • Li Z, Guo D, Wang Y, Zhen Z (2011) Technology research of large underwater ultra-deep curtain grouting in Zhong-Guan iron ore. Procedia Eng 26:731–737

    Article  Google Scholar 

  • Liu S, Li W (2019) Indicators sensitivity analysis for environmental engineering geological patterns caused by underground coal mining with integrating variable weight theory and improved matter-element extension model. Sci Total Environ 686:606–618

    Article  Google Scholar 

  • Liu H, Liu Z (2010) Recycling utilization patterns of coal mining waste in China. Resour Conserv Recy 54:1331–1340

    Article  Google Scholar 

  • Loganathan K, Chelme-Ayala P, El-Din MG (2015) Treatment of basal water using a hybrid electrodialysis reversal-reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge. Desalination 363(S1):92–98

    Article  Google Scholar 

  • Mays LW (2013) Groundwater resources sustainability: past, present, and future. Water Resour Manag 27(13):4409–4424

    Article  Google Scholar 

  • Mishra AK, Singh VP (2010) A review of drought concepts. J Hydrol 391(1–2):204–216

    Google Scholar 

  • Mullett M, Fornarelli R, Ralph D (2014) Nanofiltration of mine water: impact of feed pH and membrane charge on resource recovery and waste discharge. Membranes 4(2):163–180

    Article  Google Scholar 

  • Nagano K, Katsura T, Takeda S (2006) Development of a design and performance prediction tool for the ground source heat pump system. Appl Therm Eng 26(14–15):1578–1592

    Article  Google Scholar 

  • Qiao W, Howard KWF, Li W, Zhang S, Zhang X, Niu Y (2020) Coordinated exploitation of both coal and deep groundwater resources. Environ Earth Sci 79:120

    Article  Google Scholar 

  • Ren X, Cheng X, Wang W, Han H (2019) Comprehensive utilization technology of mine water based on “two cycle”. Hebei Metall 285:79–82 (in Chinese, with abstract in English)

  • Rivera Diaz A, Kaya E, Zarouk SJ (2016) Reinjection in geothermal fields—a worldwide review update. Renew Sust Energ Rev 53:105–162

    Article  Google Scholar 

  • Saripalli KP, Sharma MM, Bryant SL (2020) Modeling injection well performance during deep-well injection of liquid wastes. J Hydrol 227(1):41–55

    Google Scholar 

  • Shi W, Yang T, Yu Q, Li Y, Liu H, Zhao Y (2017) A study of water-inrush mechanisms based on geo-mechanical analysis and an in-situ groundwater investigation in the Zhongguan iron mine, China. Mine Water Environ 36(3):409–417

    Article  Google Scholar 

  • Shi W, Yang T, Liu H, Yang B (2018) Numerical modeling of non-Darcy flow behavior of groundwater outburst through fault using the Forchheimer equation. J Hydrol Eng 23(2):04017062

    Article  Google Scholar 

  • Song F, Liu XS (2012) Technical achievements of curtain grouting project in Zhongguan iron mine. China Univ of Geosciences Press, Wuhan (in Chinese)

    Google Scholar 

  • Standardization Administration of China (2017) Standard for groundwater quality (GB/T14848-2017). Standards Press of China, Beijing, pp 2–5 (in Chinese)

  • Sun Y, Chen G, Xu Z, Yuan H, Zhang Y, Zhou L, Wang X, Zhang C, Zheng J (2020) Research progress of water environment, treatment and utilization in coal mining areas of China. J Chin Coal Soc 45(1):304–316 (in Chinese with abstract in English)

    Google Scholar 

  • Tiwari AK, Lavy M, Amanzio G, Maio MD, Singh PK, Mahato MK (2017) Identification of artificial groundwater recharging zone using a GIS-based fuzzy logic approach: a case study in a coal mine area of the Damodar Valley, India. Appl Water Sci 7:4513–4524

    Article  Google Scholar 

  • Tong T, Elimelech M (2016) The global rise of zero liquid discharge for wastewater management: drivers, technologies, and future directions. Environ Sci Technol 50(13):6846–6855

    Article  Google Scholar 

  • Viadero RC, Tierney AE (2003) Use of treated mine water for rainbow trout (Oncorhynchus mykiss) culture—a preliminary assessment. Aquacult Eng 29(1–2):43–56

    Article  Google Scholar 

  • Wang W, Zhang Z, Yin L, Duan L, Huang J (2021a) Topical collection: groundwater recharge and discharge in arid and semi-arid areas of China. Hydrogeol J 29(2):521–524

    Article  Google Scholar 

  • Wang W, Zhao J, Duan L (2021b) Simulation of irrigation-induced groundwater recharge in an arid area of China. Hydrogeol J 29(2):525–540

    Article  Google Scholar 

  • Watzlaf GR, Ackkman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–14

    Article  Google Scholar 

  • Wu Q, Shen J, Wang Y (2017) Mining techniques and engineering application for “Coal-Water” dual-resources mine. J Chin Coal Soc 42(1):8–16 (in Chinese with abstract in English)

    Google Scholar 

  • Yang Z, Li W, Li X, Wang Q, He J (2019) Assessment of eco-geo-environment quality using multivariate data: a case study in a coal mining area of western China. Ecol Indic 107:105651

    Article  Google Scholar 

  • Yin S, Han Y, Zhang Y, Zhang J (2016) Depletion control and analysis for groundwater protection and sustainability in the Xingtai region of China. Environ Earth Sci 75:1246

    Article  Google Scholar 

  • Yuan S, Han G (2020) Combined drilling methods to install grout curtains in a deep underground mine: a case study in southwest China. Mine Water Environ 39(4):902–909

    Article  Google Scholar 

  • Yuan S, Han G, Liang Y (2021) Groundwater control in open-pit mine with grout curtain using modified lake mud: a case study in east China. Arab J Geosci 14(12):1148

    Article  Google Scholar 

  • Zhang Q (2009) The south-to-north water transfer project of China: environmental implications and monitoring strategy. J Am Water Resour as 45(5):1238–1247

    Article  Google Scholar 

  • Zhao C, Yang J, Wang S, Zhou J, Xu F, Liu J (2021) Coupling simulation of groundwater dynamics and solute transfer in the process of deep reinjection of mine water. Coal Geol Explor 49(5):36–44 (in Chinese, with abstract in English)

  • Zhou JR, Yang TH, Zhang PH, Xu T, Wei J (2017) Formation process and mechanism of seepage channels around grout curtain from microseismic monitoring: a case study of Zhangmatun iron mine, China. Eng Geol 226:301–315

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support of the National Natural Science Foundation of China (Grant No. 41877238). The authors thank Shengchao Yuan, Dajin Liu, Lvxia Ma, and Shuqun She of North China Engineering Investigation Institute Co., Ltd. for their assistance and guidance in the hydrogeological investigation and geological background.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanghua Sui.

Supplementary Information

Below is the link to the electronic supplementary material.

10230_2022_886_MOESM1_ESM.pdf

Supplementary file1: Supplemental Fig. S-1 Basic principle of membrane separation technology for mine wastewater treatment (PDF 95 KB)

Supplementary file2: Supplemental Fig. S-2 Schematic of the water-source heat pump (PDF 117 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Sui, W., Han, G. et al. An Optimized Combination of Mine Water Control, Treatment, Utilization, and Reinjection for Environmentally Sustainable Mining: A Case Study. Mine Water Environ 41, 828–839 (2022). https://doi.org/10.1007/s10230-022-00886-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00886-3

Keywords

  • Subsidence
  • Mine curtain grouting
  • Nanofiltration
  • Ground source heat pump
  • Mine water reinjection