ABEM (2012) Terrameter LS—Instruction manual. ABEM Instrument, Sundbyberg, Sweden
Akcil A, Koldas S (2006) Acid Mine Drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145. https://doi.org/10.1016/j.jclepro.2004.09.006
Article
Google Scholar
Alberti HL (2017) Estudo hidroquímico e isotópico das águas subterrâneas impactadas pela drenagem ácida da mina de urânio—Osamu Utsumi, Planalto de Poços de Caldas (MG). State Univ of Campinas, Thesis ((in Portuguese))
Google Scholar
Anterrieu O, Chouteau M, Aubertin M (2010) Geophysical characterization of the large-scale internal structure of a waste rock pile from a hard rock mine. Bull Eng Geol Environ 69:533–548. https://doi.org/10.1007/s10064-010-0264-4
Article
Google Scholar
Capovilla MNGM (2001) Urânio nos hidrotermalitos potássicos (“rocha potássica”) da Mina Osamu Utsumi, Complexo Alcalino de Poços de Caldas. PhD Diss, Univ of São Paulo (in Portuguese), MG
Book
Google Scholar
Casagrande MFS, Moreira CA, Targa DA (2020) Study of generation and underground flow of acid mine drainage in waste rock pile in uranium mine using electrical resistivity tomography. Pure Appl Geophys 77:703–721. https://doi.org/10.1007/s00024-019-02351-9
Article
Google Scholar
Castro M, Lima H, Flôres J (2011) Overview of mine closure in Minas Gerais. Brazil Revista Escola De Minas 64(2):205–211. https://doi.org/10.1590/s0370-44672011000200012
Article
Google Scholar
Cipriani M (2002) Mitigação dos impactos sociais e ambientais decorrentes do fechamento definitivo de minas de urânio. Thesis, State Univ of Campinas (in Portuguese)
Côrtes ARP, Moreira CA, Veloso DIK, Vieira LB, Bergonzoni FA (2016) Geoelectrical prospecting for a coppersulfide mineralization in the Camaquã sedimentary basin, southern Brazil. Geofís Int 55:107–117
Google Scholar
Costa PCG (2001) Projeto hidrogeoambiental das estâncias hidrominerais da Companhia Mineradora de Minas Gerais–COMIG – Estância Hidromineral de Poços de Caldas. Technical Report, COMIG/Fundação Gorceix (Portuguese)
Dimech A, Chouteau M, Aubertin M, Bussière B, Martin V, Plante B (2019) Three-dimensional time-lapse geoelectrical monitoring of water infiltration in an experimental mine waste rock pile. Vadose Zone J 18(1):1–19. https://doi.org/10.2136/vzj2018.05.0098
Article
Google Scholar
Edokpayi JN, Makungo R, Mathivha F, Rivers N, Volenzo T, Odiyo JO (2020) Influence of global climate change on water resources in South Africa: toward an adaptive management approach. In: Ch 5, Water Conservation and Wastewater Treatment in BRICS Nations, Elsevier, pp 83–115. https://doi.org/10.1016/B978-0-12-818339-7.00005-9
Fagundes JRT (2005) Balanço hídrico do bota-fora BF4 da mina de Urânio Osamu Utsumi, como subsídio para projetos de remediação de drenagem ácida. In: MS Diss, Programa de Pós-Graduação em Engenharia Civil, Escola de Minas, Federal Univ of Ouro Preto, Brazil 59 (in Portuguese)
Federative Republic of Brazil (2010) Constitution of the Federative Republic of Brazil, 3rd Edition. https://www.oas.org/es/sla/ddi/docs/acceso_informacion_base_dc_leyes_pais_b_1_en.pdf
Fraenkel MO, Santos RC, Loureiro FEVL, Muniz WS (1985) Jazidas de urânio no Planalto de Poços de Caldas—Minas Gerais. In: Principais minerais do Brasil, vol 1. MMe, DNPM e CVRD, pp 89–103 (in Portuguese)
Franklin MR (2007) Modelagem numérica do escoamento hidrológico e dos processos geoquímicos aplicados à previsão da drenagem ácida em uma pilha de estéril da mina de urânio de Poços de Caldas—MG. Thesis, Federal Univ of Rio de Janeiro (in Portuguese)
Geotomo software (2003) Geoelectrical imaging 2D & 3D. https:// www.geotomosoft.com/downloads.php
Greer BM, Burbey TJ, Zipper CE, Hester ET (2017) Electrical resistivity imaging of hydrologic flow through surface coal mine valley fills with comparison to other landforms. Hydrol Process 31(12):2244–2260. https://doi.org/10.1002/hyp.11180
Article
Google Scholar
Gurin G, Tarasov A, Ilyin Y, Titotv K (2013) Time domain spectral induced polarization of disseminated electronic conductor: laboratory data analysis through the Debye decomposition approach. J Appl Geophys 98:44–53. https://doi.org/10.1016/j.jappgeo.2013.07.008
Article
Google Scholar
Haddaway NR, Cooke SJ, Lesser P, Macura B, Nilsson AE, Taylor JJ, Raito K (2019) Evidence of the impacts of metal mining and the effectiveness of mining mitigation measures on social–ecological systems in Arctic and boreal regions: a systematic map protocol. Environ Evid 8:9. https://doi.org/10.1186/s13750-019-0152-8
Article
Google Scholar
Hester ET, Little KL, Buckwalter JD, Zipper CE, Burbey TJ (2019) Variability of subsurface structure and infiltration hydrology among surface coal mine valley fills. Sci Total Environ 651:2648–2661. https://doi.org/10.1016/j.scitotenv.2018.10.169
Article
Google Scholar
Leite JSM (2010) Previsão de drenagem ácida por meio de testes estáticos do material do bota fora 4 da mina Osamu Utsumi –Caldas/MG. Master’s diss, Programa de Pós-Graduação em Evolução Crustal e Recursos Naturais, Dept de Geologia, Escola de Minas, Federal Univ of Ouro Preto, Brazil. 59 (in Portuguese)
Lghoul M, Sbihi K, Maqsoud A, Hakkou R, Kchikach A (2021) Remediation scenario of the abandoned Kettara mine site (Morocco): acid mine drainage (AMD) transport modeling. SN Appl Sci 3:702. https://doi.org/10.1007/s42452-021-04690-6
Article
Google Scholar
Loke MH, Baker RD (1996) Rapid least squares inversion of apparent resistivity pseudosections by quasi-Newton method. Geophys Prospect 44:131–152. https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
Article
Google Scholar
Martín-Crespo T, Gómes-Ortiz D, Marín-Velázquez S, Martínez-Pagán P, Ignacio C, Lillo J, Faz A (2018) Geoenvironmental characterization of unstable abandoned mine waste rocks combining geophysical and geochemical methods (Cartagena-La Union district, Spain). Eng Geol 232:135–146. https://doi.org/10.1016/j.enggeo.2017.11.018
Article
Google Scholar
Martínez-Pagán P, Gómez-Ortiz D, Martín-Crespo T, Martín-Velázquez S, Martínez-Segura M (2021) Electrical resistivity imaging applied to waste rocks ponds: an overview. Mine Water Environ. https://doi.org/10.1007/s10230-020-00741-3
Article
Google Scholar
Moon CJ, Whateley MEG, Evans AM (2006) Introduction to mineral exploration. Backwell Publishing, Oxford
Google Scholar
Moreira CA, Carrara A, Helene LPI, Hansen MAF, Malagutti Filho W, Dourado JC (2017a) Electrical resistivity tomography (ERT) applied in the detection of inorganic contaminants in suspended aquifer in Leme city (Brazil). Rev Brasil De Geofís 35:213–225. https://doi.org/10.22564/rbgf.v35i3.848
Article
Google Scholar
Moreira CA, Helene LPI, Côrtes ARP (2017b) DC resistivity method applied in the monitoring of diesel leakage in a railway accident in São Manuel city, São Paulo State (Brazil). Rev Brasil De Geofís 35:5–14. https://doi.org/10.22564/rbgf.v35i1.969
Article
Google Scholar
Moreira CA, Casagrande MFS, Büchi FMS, Targa DA (2020) Hydrogelogical characterization of a waste rock pile and bedrock affected by acid mine drainage from geophysical survey. SN Appl Sci 2:1236. https://doi.org/10.1007/s42452-020-3021-8
Article
Google Scholar
Moreira CA, Lapola MM, Carrara A (2016) Comparative analyzes among electrical resistivity tomography arrays in the characterization of flow structure in free aquifer. Geofís Int, 55(2):119–129. http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/1716/1592
Morin KA, Gerencher E, Jones CE, Konasewich DE (1991) Critical literature review of acid drainage from waste rock. MEND Rep 1(11):1
Google Scholar
Moyé J, Picard-Lesteven T, Zouhri L, Amari KE, Hibti M, Benkaddour A (2017) Groundwater assessment and environmental impact in the abandoned mine of Kettara (Morocco). Environ Pollut 231:899–907. https://doi.org/10.1016/j.envpol.2017.07.044
Article
Google Scholar
Nobes DC (1996) Troubled waters: environmental applications of electrical and electromagnetic methods. Surv Geophys 17:393–454. https://doi.org/10.1007/BF01901640
Article
Google Scholar
Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16. https://doi.org/10.1016/j.apgeochem.2015.02.008
Article
Google Scholar
Okpoli CC (2013) Sensitivity and resolution capacity of electrode configurations. Int J Geophys. https://doi.org/10.1155/2013/608037
Article
Google Scholar
Pardo Abad CJ (2019) Environmental recovery of abandoned mining areas in Spain: sustainability and new landscapes in some case studies. J Sustain Res 1:e190003. https://doi.org/10.20900/jsr20190003
Article
Google Scholar
Pearce S, Lehane S, Pearce J (2016) Waste material placement options during construction and closure risk reduction—quantifying the how, the why and the how much. In: AB Fourie & M Tibbett (eds). Mine Closure, Australian Centre for Geomechanics. https://doi.org/10.36487/ACG_rep/1608_51_Pearce
Poisson J, Chouteau M, Aubertin M, Campos D (2009) Geophysical experiments to image the shallow internal structure and the moisture distribution of a mine waste rock pile. J Appl Geophys 67:179–192. https://doi.org/10.1016/j.jappgeo.2008.10.011
Article
Google Scholar
Power C, Tsourlos P, Ramasamy M, Nivorlis A, Mkandawire M (2018) Combined DC resistivity and induced polarization (DC-IP) for mapping the internal composition of a mine waste rock pile in Nova Scotia, Canada. J Appl Geophys 150:40–51. https://doi.org/10.1016/j.jappgeo.2018.01.009
Article
Google Scholar
Rey J, Martínez J, Hidalgo MC, Mendoza R, Sandoval S (2021) Assessment of tailings ponds by a combination of electrical (ERT and IP) and hydrochemical techniques (Linares, southern Spain). Mine Water Environ. https://doi.org/10.1007/s10230-020-00709-3
Article
Google Scholar
Rubio RF (2012) Mining: the challenge knocks on our door. Mine Water Environ 31:69–73. https://doi.org/10.1007/s10230-012-0169-5
Article
Google Scholar
Schorscher HD, Shea ME (1992) The regional geology of the Poços de Caldas alkaline complex: mineralogy and geochemistry of selected nepheline syenites and phonolites. J Geochem Explor 45:25–51. https://doi.org/10.1016/0375-6742(92)90121-N
Article
Google Scholar
Skousen JG, Ziemkiewicz PF, McDonald LM (2018) Acid mine drainage formation, control and treatment: approaches and strategies. Extractive Ind Soc 6(1):241–249. https://doi.org/10.1016/j.exis.2018.09.008
Article
Google Scholar
Smith FW, Underwood B (2000) Mine closure: the environmental challenge. Min Technol 109(3):202–209. https://doi.org/10.1179/mnt.2000.109.3.202
Article
Google Scholar
Targa DA, Moreira CA, Camarero PL, Casagrande MFC, Alberti HLC (2019) Structural analysis and geophysical survey for hydrogeological diagnosis in uranium mine, Poços de Caldas (Brazil). SN Appl Sci 1:299. https://doi.org/10.1007/s42452-019-0309-7
Article
Google Scholar
Targa DA, Moreira CA, Casagrande MFS (2021) Hydrogeological analysis of sulfide waste rocks at a uranium mine using geophysical and hydrochemical methods. Mine Water Environ. https://doi.org/10.1007/s10230-021-00791-1
Article
Google Scholar
Valeton I, Schumann A, Vinx R, Wieneke M (1997) Supergene alteration since the upper cretaceous on alkaline igneous and metasomatic rocks of the Poços de Caldas ring complex, Minas Gerais, Brazil. Appl Geochem 12:133–154. https://doi.org/10.1016/S0883-2927(96)00060-1
Article
Google Scholar
Veloso DIK, Moreira CA, Côrtes ARP (2015) Integration of geoelectrical methods in the diagnostic of a diesel contaminated site in Santa Ernestina (SP, Brazil). Rev Brasil De Geofís 33(4):667–676. https://doi.org/10.22564/rbgf.v33i4.760
Article
Google Scholar
Vieira LB, Moreira CA, Côrtes ARP, Luvizotto GL (2016) Geophysical modeling of the manganese deposit for induced polarization method in Itapira (Brazil). Geofís In 55:107–117. http://revistagi.geofisica.unam.mx/index.php/RGI/article/view/1715/1591
Waber N, Schorscher HD, Tj P (1992) Hydrothermal and supergene uranium mineralization at the Osamu Utsumi mine, Poços de Ca1das, Minas Gerais, Brazil. J Geochem Explor 45:53–112. https://doi.org/10.1016/0375-6742(92)90122-O
Article
Google Scholar
Warhate SR, Yenkie MKN, Chaudhari MD, Pokale WK (2006) Impacts of mining activities on water and soil. J Environ Sci Eng 48(2):81–90
Google Scholar
Wilson GW (2011) Rock dump hydrology: an overview of full-scale excavations and scale-up experiments conducted during the last two decades. In: Bell LC, Braddock B (Eds), Proc, 7th Australian Workshop on Acid and Metalliferous Drainage, pp 307–322
Wolkersdorfer C, Bowell R (2005) Contemporary reviews of mine water studies in Europe, Part 3. Mine Water Environ 24:58–76. https://doi.org/10.1007/s10230-005-0074-2
Article
Google Scholar
Younger PL, Wolkersdorfer C (2004) Mining impacts on the fresh water environment: technical and managerial guidelines for catchment scale management. Mine Water Environ 23:s2–s80. https://doi.org/10.1007/s10230-004-0028-0
Article
Google Scholar
Yuval D, Oldenburg W (1996) DC resistivity and IP methods in acid mine drainage problems: results from the Copper Clif mine waste rocks impoundments. J Appl Geophys 34:187–198. https://doi.org/10.1016/0926-9851(95)00020-8
Article
Google Scholar