Skip to main content

Dynamic Characteristics of Water Inflow from a Coal Mine’s Roof Aquifer

Dynamische Charakteristika des Wasserzustroms aus dem obersten Aquifer eines Kohlebergwerks

Características dinámicas del flujo de agua del acuífero del techo de una mina de carbón

煤矿顶板含水层涌水量的动态特征

Abstract

The static and dynamic inflow of water from the roof aquifer changes as mining progresses. We used a second-order dynamic model to describe the water inflow process. The parameters of the water inflow model were solved using actual drainage from roof aquifers at nine working faces in the Yuanyanghu mining area of the Ningxia Autonomous Region, China, as well as the peak water inflow values, their locations, the equilibrium values of water inflow, and their initial occurrence locations. The parameters of the second-order dynamic model of water inflow were inversely calculated. The peak values of water inflow without drainage were also calculated. The results indicate that pre-drainage of roof water significantly weakens the intensity of water inflow during the mining process, reducing peak values by more than 72%. The characteristics of the water-conducting fractured zones determine the major drainage locations, while the water-rich and water-conductive nature of the direct discharge aquifer affects the water inflow equilibrium values and initial occurrence positions. The results show that the model parameters and characteristic values of water inflow are determined by the hydrogeological nature of the roof strata, water-conducting fractured zone(s), and mining speed.

Zusammenfassung

Die statischen und dynamischen Zuflüsse aus dem obersten Aquifer variieren mit dem Fortschreiten des Abbaus. In dieser Arbeit wurde die Hypothese, dass der Wasserzufluss mit dem Abbau räumlich variiert, an neun Abbaustrecken im Yuanyanghu-Bergbaugebiet in der Autonomen Region Ningxia, China, getestet. Zur Beschreibung des Wasserzuflusses wurde ein dynamisches Modell zweiter Ordnung verwendet. Die Parameter des Modells wurden unter Verwendung des tatsächlichen Abflusses aus dem obersten Aquifer, der Spitzenwerte des Zuflusses, ihrer Lokalitäten, der Gleichgewichtswerte des Wasserzuflusses und ihrer anfänglichen Auftrittsorte kalibriert. Die Parameterermittlung für das Modell des einströmenden Wassers erfolgte invers. Die Spitzenwerte des Zuflusses wurden auch für den Fall berechnet, dass keine Entwässerung erfolgte. Die Ergebnisse zeigen, dass die Vorentwässerung des obersten Aquifers die Spitzenwerte des Wasserzuflusses während des Abbaus um mehr als 72 % abschwächt. Die Eigenschaften der wasserführenden Bruchzonen bestimmen die Zuflussbereiche, während die wasserleitenden Eigenschaften des Herkunftsaquifers die Gleichgewichtswerte des Wasserzuflusses und die anfänglichen Auftrittsorte beeinflussen. Die Ergebnisse zeigen, dass die Modellparameter und die charakteristischen Werte des Wasserzustroms durch die hydrogeologischen Eigenschaften der Deckschichten, die hydraulische Leitfähigkeit der Bruchzone und die Geschwindigkeit des Abbaufortschritts bestimmt werden.

Resumen

La estática y la dinámica de la entrada de agua del acuífero del techo cambian a medida que avanza la explotación minera. En este trabajo se ha comprobado la hipótesis de que la entrada de agua presenta variaciones espaciales con la explotación minera en nueve frentes de trabajo de la zona minera de Yuanyanghu, en la Región Autónoma de Ningxia (China). Se utilizó un modelo dinámico de segundo orden para describir el proceso de entrada de agua. Los parámetros del modelo de entrada de agua se resolvieron con el drenaje real del acuífero del techo, así como con los valores máximos de entrada de agua, sus ubicaciones, los valores de equilibrio de la entrada de agua y sus localizaciones iniciales. Los parámetros del modelo dinámico de segundo orden de la entrada de agua se calcularon de manera inversa. También se calcularon los valores máximos de entrada de agua sin drenaje. Los resultados indican que el drenaje previo del agua del tejado debilita significativamente la intensidad de la entrada de agua durante el proceso de extracción, reduciendo los valores máximos en más de un 72%. Las características de las zonas fracturadas conductoras de agua determinan las principales ubicaciones de drenaje, mientras que la naturaleza rica en agua y conductora de agua del acuífero de descarga directa, afecta a los valores de equilibrio del flujo de entrada de agua y a las posiciones de aparición inicial. Los resultados muestran que los parámetros del modelo y los valores característicos de la entrada de agua están determinados por la naturaleza hidrogeológica de los estratos del techo, la(s) zona(s) fracturada(s) conductora(s) de agua y la velocidad de extracción.

抽象的

顶板含水层的静态和动态充水随采矿推进而变化。文章验证了中国宁夏自治区鸳鸯湖矿区9个工作面的涌水量随开采空间变化的假设。采用了二阶动态模型描述涌水过程。利用顶板含水层的实际疏干水量以及涌水量峰值、位置、涌水量平衡值和初始涌水位置求解涌水量模型参数。反算得出涌水量二阶动态模型参数。同时, 计算了无疏干的涌水量峰值。结果表明, 回采前顶板预疏干显著削弱了充水强度, 涌水量峰值减小72%以上。导水裂隙带特征决定了主要顶板疏干位置, 直接疏干含水层的富水性和导水特征影响着涌水量平衡值和初始发生位置。结果表明, 模型参数和涌水量特征值由顶板地层的水文地质性质、导水断裂带和回采速度决定。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  • Chen CX, Tang ZH (1990) Numerical solution of groundwater flow problem. China University of Geosciences Press, Wuhan

    Google Scholar 

  • Chen WJ, Lin MR, Jiang HL (1966) Analysis of kinetic model of double exponential fluorencence decay. Acta Opt Sin 6(12):1124–1129 ((in Chinese))

    Google Scholar 

  • Du MM, Deng YE, Xu M (2009) Review of methodology for prediction of water yield of mine. Acta Geol Sin 29(1):70–73 ((in Chinese))

    Google Scholar 

  • Guo G, Wang SX, Sun XY, Zhao XH (2009) Ultrasonic double exponential model and its parameter determination. Acta Electron Sin 37(7):1501–1504 ((in Chinese))

    Google Scholar 

  • Hu WY (2005) Theory and method of mine water disaster prevention and control. Coal Industry Publishing House, Beijing

    Google Scholar 

  • Hu WY (2016) Water inflows prediction technique of water inflow from roof aquifer during extraction of shallow seam. Coa Geol Explor 44(5):91–96 ((in Chinese))

    Google Scholar 

  • Hu WY, Yan L (2016) Analysis and consideration on prediction problems of mine water inflow volume. Coa Sci Technol 44(1):13–18 ((in Chinese))

    Google Scholar 

  • Hu XJ, Li WP, Cao DT, Liu MC (2012) Index of multiple factors and expected height of fully mechanized water flowing fractured zone. J China Coal Soc 37(4):613–620 ((in Chinese))

    Google Scholar 

  • LaMoreaux JW, Wu Q, Zhou WF (2014) New development in theory and practice in mine water control in China. Mine Water Environ 29(2):141–145

    Google Scholar 

  • Le J, Li WP, Qiao W (2009) Prediction method of roof water inflow on multi-working faces under mining effect. Mine Saf Environ Prot 36(3):22–24 ((in Chinese))

    Google Scholar 

  • Lian HQ, Xia XX, Xu B, Xu H, Yin SX (2014) Evaluation and applicability study on prediction methods of water inflow in mines. J North China Inst Sci Technol 11(2):22–27 ((in Chinese))

    Google Scholar 

  • Lin JL, Dong ZS, Zhang XF, Luo YS, Wang ZL, Sun TZ, Lin H, Liu XR (2002) A method for multi-exponential fitting to the fluorescence decay. Chin J Lumin 23(1):93–96 ((in Chinese))

    Google Scholar 

  • Liu Y, Zhang YZ (2010) Forecast method for water inflow from working face in shallowly buried coal seam. J Min Saf Eng 27(1):120–124 ((in Chinese))

    Google Scholar 

  • Liu Y, Wang ZR, Niu JL (2010) Determination of prediction method of water inrush from working face. Mine Saf Environ Prot 37(5):29–30 ((in Chinese))

    Google Scholar 

  • Luo ZJ, Wang Y, Lu S, Su SY (2010a) Three-dimensional numerical simulation model for predicting groundwater inflow of mine. J China Coal Soc 35(S):145–149 ((in Chinese))

    Google Scholar 

  • Luo ZJ, Yang L, Zhou Q (2010b) Three-dimensional numerical model for predicting groundwater inflow of mine in coal field. Chin J Hydrodyn 25(6):737–742 ((in Chinese))

    Google Scholar 

  • Ma LJ, Zhao BF, Wang H, Gao Y (2020) Analysis of spatial differences in permeability based on sedimentary and structural features of the sandstone aquifer overlying coal seams in western China. Mine Water Environ 39(2):229–241

    Article  Google Scholar 

  • Polubarinova-Kochina PY (1962) Theory of ground water movement. Princeton University Press, Princeton

    Google Scholar 

  • Soni AK (2020) Estimation of mine water quantity: development of guidelines for Indian mines. Mine Water Environ 39(2):397–406

    Article  Google Scholar 

  • Wei GX, Zhou ZF, Guo Y, Dong Y, Dang HH, Wang YB, Ma JZ (2014) Long-term effects of tillage on soil aggregates and the distribution of soil organic carbon, total nitrogen, and other nutrients in aggregates on the semi-arid Loess Plateau, China. Arid Land Res Manag 28:291–310

    Article  Google Scholar 

  • Woodruff CM (1949) Estimating the nitrogen delivery of soil from the organic matter determination as reflected by Sanborn field. Soil Sci Soc Am J 14:208–212

    Article  Google Scholar 

  • Wu JC, Xue YQ (2009) The groundwater dynamics. China Water Resources and Hydropower Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Wu Q, Liu YZ, Zhou WF, Li BY, Zhao B, Liu SQ, Sun WJ, Zeng YF (2015) Evaluation of water inrush vulnerability from aquifers overlying coal seams in the Menkeqing coal mine, China. Mine Water Environ 34(3):258–269

    Article  Google Scholar 

  • Wu Q, Guo XM, Shen JJ, Xu S, Zeng YF (2017) Risk assessment of water inrush from aquifers underlying the Gushuyuan coal mine, China. Mine Water Environ 36:96–103

    Article  Google Scholar 

  • Xu HJ, Zhao BF, Zhou Y, Liu SY (2018) Evaluation on water disaster from roof strata based on the entropy-weight and matter-element extension model. J Min Saf Eng 35(1):112–117 ((in Chinese))

    Google Scholar 

  • Xue YQ (1986) Principle of groundwater dynamics. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Yang LX, Pan JJ, Yuan SF (2006) Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China. J Res 17(1):39–43

    Article  Google Scholar 

  • Yin HY, Zhao H, Xie DL, Sang SZ, Shi YQ, Tian MH (2019) Mechanism of mine water inrush from overlying porous aquifer in Quaternary: a case study in Xinhe coal mine of Shandong Province, China. Arab J Geosci 12(5):162–173

    Article  Google Scholar 

  • Yu WJ, Huang X (1990) Curve fitting problems of multi-exponential decay expressions. Commun Appl Mat Comput 4(01):57–69 ((in Chinese))

    Google Scholar 

  • Zeng YF, Wu Q, Liu SQ, Zhai YL (2018) Evaluation of a coal seam roof water inrush: case study in the Wangjialing coal mine, China. Mine Water Environ 37(1):174–184

    Article  Google Scholar 

  • Zheng G, He Y (2015) Prediction of roof sandstone water discharge at a super large working face in a deep mine. Saf Coal Mines 46(s1):76–80 ((in Chinese))

    Google Scholar 

  • Zhou RL, Dai ZX (1998) The theory and practice of coal mine inflow prediction. Coal Sci Technol 26(6):47–49 ((in Chinese))

    Google Scholar 

  • Zhou QL, Juan H, Arturo H (2017) The numerical analysis of fault induced mine water inrush using the extended finite element method and fracture mechanics. Mine Water Environ 37:185–195

    Article  Google Scholar 

  • Zhou ZF, Jin DW, Hu WY, Dong Y, Cao HD, Zhao CH, Peng JJ, Zhao BF, Dong XL (2018) Double-exponential variation law of water-inflow from roof aquifer in goaf of working face with mining process. J China Coal Soc 43(9):2587–2594 ((in Chinese))

    Google Scholar 

  • Zhu TE, Li WP, Wang QQ, Hu YB, Fan KF, Du JF (2020) Study on the height of the mining-induced water-conducting fracture zone under the Q2l loess cover of the Jurassic coal seam in northern Shaanxi, China. Mine Water Environ 39(1):57–67

    Article  Google Scholar 

Download references

Acknowledgements

We thank all of the coal mine technicians for providing the basic observation data, and Dr. Peng Jiangjun of Xi'an Jiaotong University, Professor Zhu Gaofeng of Lanzhou University, and Dr. Du Yuanbo of Huazhong University of Science and Technology for their help in model construction and solution. This study was supported by the National Natural Science Foundation Project of China (41807221), Tiandi Science and Technology Co. Ltd. Science and Technology Innovation Venture Capital Special Project (2018-TD-QN052), Shaanxi Natural Science Basic Research Project (2018JQ5150), Science and Technology Innovation Fund of Xi’an Research Institute of CCTEG (2017XAYMS07, 2020XAYDC03-1), and the National Key Research and Development Project of China (2017YFC0804103).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuning Dong.

Supplementary Information

Below is the link to the electronic supplementary material.

10230_2022_873_MOESM1_ESM.pdf

Fig. S-1 Variations of water inflow with the mining process described using the second-order dynamic system model (PDF 40 kb)

Fig. S-2 Variations of water inflow from roof aquifer with drainage and without drainage (PDF 42 kb)

10230_2022_873_MOESM3_ESM.pdf

Fig. S-3 Cluster analysis for the relationships between selected parameters calculated by using the second-order dynamic system model with the hydrogeological parameters, the development depth of water conducted fractured zone and the mining velocity (PDF 41 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Z., Dong, S., Wang, H. et al. Dynamic Characteristics of Water Inflow from a Coal Mine’s Roof Aquifer. Mine Water Environ 41, 764–774 (2022). https://doi.org/10.1007/s10230-022-00873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00873-8

Keywords

  • Static and dynamic inflow
  • Second-order dynamic model
  • Peak water inflow
  • Equilibrium water inflow