Skip to main content

Groundwater Geochemical Variation and Controls in Coal Seams and Overlying Strata in the Shennan Mining Area, Shaanxi, China

陕西神南矿区(中国)煤层及上覆地层的地下水地球化学变化及控制作用

Variación geoquímica de las aguas subterráneas y controles en las vetas de carbón y estratos suprayacentes en la zona minera de Shennan, Shaanxi, China

Abstract

Water resource conservation and ecological protection are key coal mining issues in northern Shaanxi Province and the Yellow River Basin. Revealing the characteristics and variation patterns of groundwater quality in the coal series and its overlying aquifers can provide a geological foundation for solving or optimizing these issues. Taking the Zhangjiamao coal mine of the Shennan mining area in northern Shaanxi Province, western China, as an example, water samples were collected for analysis from the: quaternary strata, weathered bedrock, burnt rock, coal series, and coal seam. Test parameters included conventional ion concentrations, total dissolved solids (TDS), and pH. Key water chemistry indicators such as oxidation/reduction index (ORI) and groundwater chemical closure index (GCCI) were used to explain the water quality differences. The Quaternary water, burnt rock water, and weathered bedrock water were dominantly the Ca–HCO3 type, the coal series water (Yan’an Formation) was dominantly Ca–HCO3 and Na–Cl types, and the coal seam water was dominantly Na–Cl type. From the shallow groundwater to coal seam water, dissolution and leaching gradually decrease and degree of retention gradually increases. Coal seam water was characterized by high TDS, high GCCI, and low ORI, reflecting a closed hydrogeochemical environment and moderate sulfate reduction. Leaching, salt accumulation, sulfate reduction, and cation exchange jointly control the groundwater chemical characteristics and evolution of the coal series and its overlying aquifers. Salt accumulation and cation exchange reactions of the stagnant coal seam water in the arid and semiarid climates and shallow buried conditions result in increased mineralization; the water quality is vastly different from that of the overlying aquifers, which are dominated by leaching. Groundwater circulation in the coal series and coal seam are of the infiltration–retention type, and the overlying aquifer of the coal series are of the infiltration–runoff type. A comprehensive hydrogeological model was constructed of the Middle Jurassic coal series and its overlying aquifers in the area. The results of this study have implications for the identification of mine water influx sources in the Shennan mining area, and the understanding of controls on the groundwater geochemical variation in Jurassic coal field of western China.

Resumen

La conservación de los recursos hídricos y la protección ecológica son cuestiones relevantes de la minería del carbón en el norte de la provincia de Shaanxi y en la cuenca del río Amarillo. El conocimiento de las características y de los patrones de variación de la calidad de las aguas subterráneas en la serie de carbón y sus acuíferos suprayacentes, puede proporcionar una base geológica para resolver u optimizar estas cuestiones. Se tomó como ejemplo a la mina de carbón de Zhangjiamao de la zona minera de Shennan, en el norte de la provincia de Shaanxi, al oeste de China; se recogieron muestras de agua para su análisis de los estratos cuaternarios, de la roca madre meteorizada, de la roca quemada y de la veta de carbón. Los parámetros de análisis incluían las concentraciones de iones convencionales, el total de sólidos disueltos (TDS) y el pH. Se utilizaron indicadores químicos como el índice de oxidación/reducción (ORI) y el índice de cierre químico del agua subterránea (GCCI), para explicar las diferencias de calidad del agua. El agua del cuaternario, el agua de roca quemada y el agua de lecho rocoso meteorizado eran predominantemente del tipo Ca-HCO3, el agua de la serie de carbón (Formación Yan'an) era predominantemente del tipo Ca-HCO3 y Na-Cl mientras que el agua de la veta de carbón era predominantemente del tipo Na-Cl. La disolución y la lixiviación disminuyen gradualmente desde las aguas subterráneas poco profundas hasta el agua de la veta de carbón mientras que el grado de retención aumenta gradualmente. El agua de la veta de carbón se caracterizó por alto TDS, alto GCCI y bajo ORI, lo que refleja un entorno hidrogeoquímico cerrado y una moderada reducción de sulfatos. La lixiviación, la acumulación de sales, la reducción de sulfatos y el intercambio de cationes controlan conjuntamente las características químicas de las aguas subterráneas y la evolución de la serie de carbón y sus acuíferos suprayacentes. La acumulación de sales y las reacciones de intercambio de cationes del agua estancada de la veta de carbón en los climas áridos y semiáridos y en las condiciones de enterramiento poco profundas, dan lugar a una mayor mineralización; la calidad del agua es muy diferente de la de los acuíferos suprayacentes en los que predomina la lixiviación. La circulación de las aguas subterráneas en la serie de carbón y en la veta de carbón son del tipo infiltración-retención y el acuífero suprayacente de la serie de carbón es del tipo infiltración-escurrimiento. Se construyó un modelo hidrogeológico completo de la serie de carbón del Jurásico Medio y sus acuíferos suprayacentes en la zona. Los resultados de este estudio tienen implicaciones para la identificación de las fuentes de irrupción de agua de la mina en la zona minera de Shennan y la comprensión de los controles sobre la variación geoquímica de las aguas subterráneas en el campo de carbón del Jurásico de China occidental.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  • Adhikary DP, Guo H (2015) Modelling of longwall mining-induced strata permeability change. Rock Mech Rock Eng 48(1):345–359

    Article  Google Scholar 

  • Barzegar R, Moghaddam AA, Tziritis E, Fakhri MS, Soltani S (2017) Identification of hydrogeochemical processes and pollution sources of groundwater resources in the Marand plain, northwest of Iran. Environ Earth Sci 76(7):297

    Article  Google Scholar 

  • Bi YL, Xiao L, Sun JH (2019) An arbuscular mycorrhizal fungus ameliorates plant growth and hormones after moderate root damage due to simulated coal mining subsidence: a microcosm study. Environ Sci Pollut R 26(11):11053–11061

    Article  Google Scholar 

  • Bi YL, Xiao L, Guo C, Christie P (2020) Revegetation type drives rhizosphere arbuscular mycorrhizal fungi and soil organic carbon fractions in the mining subsidence area of northwest China. CATENA 195:104791

    Article  Google Scholar 

  • Chae G, Yun S, Mayer B, Kim K, Kim S, Kwon J, Kim K, Koh Y (2007) Fluorine geochemistry in bedrock groundwater of South Korea. Sci Total Environ 385:272–283

    Article  Google Scholar 

  • Chi MB, Zhang DS, Zhao Q, Yu W, Liang SS (2021) Determining the scale of coal mining in an ecologically fragile mining area under the constraint of water resources carrying capacity. J Environ Manage 279:111621

    Article  Google Scholar 

  • Cidu R, Biddau R, Spano T (2005) Temporal variations in water chemistry at abandoned mines hosted in carbonate environment. Mine Water Environ 24:77–87

    Article  Google Scholar 

  • Cidu R, Frau F, Da Pelo S (2011) Drainage at abandoned mining sites: natural attenuation of contaminants under different seasons. Mine Water Environ 30:113–126

    Article  Google Scholar 

  • Cidu R, Dore E, Biddau R, Nordstrom DK (2018) Antimony and arsenic fate in contaminated waters at the Su Suergiu abandoned mine (Sardinia, Italy). Mine Water Environ 37:151–165

    Article  Google Scholar 

  • Currell M, Cartwright I, Raveggi M, Han DM (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Appl Geochem 26:540–552

    Article  Google Scholar 

  • Dahm KG, Guerra KL, Xu P, Drewes JE (2011) Composite geochemical database for coalbed methane produced water quality in the rocky mountain region. Environ Sci Technol 45:7655–7663

    Article  Google Scholar 

  • Dahm KG, Guerra KL, Munakata-Marr J, Drewes JE (2014) Trends in water quality variability for coalbed methane produced water. J Clean Prod 84:840–848

    Article  Google Scholar 

  • Dastgheib SA, Knutson C, Yang Y, Salih HH (2016) Treatment of produced water from an oilfield and selected coal mines in the Illinois Basin. Int J Greenh Gas Control 54(2):513–523

    Article  Google Scholar 

  • Du ZN, Dang XY, Lu N (2008) Distribution characteristics of burnt metamorphic rocks in the northern Shaanxi energy and chemical industry base, China and their hydrogeological significance. Geol Bull Chin 27(8):1168–1172 (in Chinese)

    Google Scholar 

  • Fan GW, Zhang DS (2015) Mechanisms of aquifer protection in underground coal mining. Mine Water Environ 34(1):95–104

    Article  Google Scholar 

  • Geng HQ, Chen F, Wang ZY, Liu J, Xu WH (2017) Environmental management zoning for coal mining in mainland China based on ecological and resources conditions. Environ Monit Assess 189(5):228

    Article  Google Scholar 

  • Guo C, Qin Y, Xia YC, Ma DM, Han D, Chen Y, Chen W, Jian K, Lu LL (2017) Geochemical characteristics of water produced from CBM wells and implications for commingling CBM production: a case study of the Bide-Santang Basin, western Guizhou, China. J Petrol Sci Eng 159:666–678

    Article  Google Scholar 

  • Guo QL, Han YY, Yang YS, Fu GB, Li JL (2019) Quantifying the impacts of climate change, coal mining and soil and water conservation on streamflow in a coal mining concentrated watershed on the Loess Plateau. China Water 11(5):1054

    Article  Google Scholar 

  • Guo C, Qin Y, Wu CF, Lu LL (2020) Hydrogeological control and productivity modes of coalbed methane commingled production in multi-seam areas: a case study of the Bide-Santang Basin, western Guizhou. South China J Petrol Sci Eng 189:107039

    Article  Google Scholar 

  • Guo C, Qin Y, Ma DM, Xia YC, Chen Y, Si QH, Lu LL (2021a) Ionic composition, geological signature and environmental impacts of coalbed methane produced water in China. Energ Source Part A 43(10):1259–1273

    Article  Google Scholar 

  • Guo C, Qin Y, Sun XY, Wang SQ, Xia YC, Ma DM, Bian HY, Shi QM, Chen Y, Bao Y, Lu LL (2021b) Physical simulation and compatibility evaluation of multi-seam CBM co-production: implications for the development of stacked CBM systems. J Petrol Sci Eng 204:108702

    Article  Google Scholar 

  • Guo C, Wang SQ, Shi QM, Qiao JW, Li HT, Zhang WG, Li J, Zhang C, Wang XK, Du FP (2021c) Chemical compositions and technological properties of low-rank coals in the south Shenfu mining area: Characteristics, relationship and practice. Coal Geol Explor 49(1):87–99 (in Chinese)

    Google Scholar 

  • Jiao YQ, Wang SM, Fan LM, Wu LQ, Rong H, Zhang F (2020) Key elements and framework model of groundwater system in Jurassic coal measures of Ordos Basin. J China Coal Soc 45(7):2411–2422 (in Chinese)

    Google Scholar 

  • Klein DA, Flores RM, Venot C, Gabbert K, Schmidt R, Stricker GD, Pruden A, Mandernack K (2008) Molecular sequences derived from Paleocene Fort Union Formation coals vs. associated produced waters: implications for CBM regeneration. Int J Coal Geol 76:3–13

    Article  Google Scholar 

  • Larson LR, Daddow RL (1984) Ground-water quality data from the Powder River structural basin and adjacent areas, northeastern Wyoming. U.S. Geological Survey Open-File Report 83–939

  • Liu SL, Li WP (2019) Zoning and management of phreatic water resource conservation impacted by underground coal mining: a case study in arid and semiarid areas. J Clean Prod 224:677–685

    Article  Google Scholar 

  • Liu SL, Li WP, Wang QQ, He JH, Xue S (2018) Water inrush risk zoning and water conservation mining technology in the Shennan mining area, Shaanxi. China Arab J Sci Eng 43(1):321–333

    Article  Google Scholar 

  • Luan JK, Zhang YQ, Tian J, Meresa H, Liu DF (2020) Coal mining impacts on catchment runoff. J Hydrol 589:125101

    Article  Google Scholar 

  • Malinowska AA, Misa R, Tajdus K (2018) Geomechanical modeling of subsidence related strains causing earth fissures. Acta Geodyn Geomater 15(2):197–204

    Article  Google Scholar 

  • Palchik V (2020) Analysis of main factors influencing the apertures of mining-induced horizontal fractures at longwall coal mining. Geomech Geophys Geo-Energy Geo-Resour 6(2):37

    Article  Google Scholar 

  • Peng SP, Bi YL (2020) Strategic consideration and core technology about environmental ecological restoration in coal mine areas in the Yellow River basin of China. J China Coal Soc 45(4):1211–1221 (in Chinese)

    Google Scholar 

  • Poulsen BA, Adhikary D, Guo H (2018) Simulating mining-induced strata permeability changes. Eng Geol 237:208–216

    Article  Google Scholar 

  • Rice CA (2003) Production waters associated with the Ferron coalbed methane fields, central Utah: chemical and isotopic composition and volumes. Int J Coal Geol 56:141–169

    Article  Google Scholar 

  • Rice CA, Flores RM, Stricker GD, Ellis MS (2008) Chemical and stable isotopic evidence for water/rock interaction and biogenic origin of coalbed methane, Fort Union Formation, Powder River Basin, Wyoming and Montana USA. Int J Coal Geol 76:76–85

    Article  Google Scholar 

  • Taulis M, Milke M (2013) Chemical variability of groundwater samples collected from a coal seam gas exploration well, Maramarua. New Zealand Water Res 47(3):1021–1034

    Google Scholar 

  • Taylor GH, Teichmüller M, Davis A, Diessel CFK, Robert P (1998). Organic petrology. Borntraeger.

  • Van Voast WA (2003) Geochemical signature of formation waters associated with coalbed methane. AAPG Bull 87(4):667–676

    Article  Google Scholar 

  • Wang SM, Fan LM, Huang QX, Yang ZY, Shen T (2010) Study on overburden aquiclude and water protection mining regionazation in the ecological fragile mining area. J China Coal Soc 35(1):7–14 (in Chinese)

    Google Scholar 

  • Wang QQ, Li WP, Li T, Li XQ, Liu SL (2018) Goaf water storage and utilization in arid regions of northwest China: a case study of Shennan coal mine district. J Clean Prod 202:33–44

    Article  Google Scholar 

  • Wang SM, Sun Q, Qiao JW, Wang SQ (2020) Geological guarantee of coal green mining. J China Coal Soc 45(1):8–15 (in Chinese)

    Google Scholar 

  • Woessner WW, Osborne TJ, Heffner EL, Andrews CJ, Whiteman J, Spotted Elk W, Morales-Brink D (1981) Hydrologic impact from potential coal strip mining, northern Cheyenne Reservation. U.S. Environmental Protection Agency Research and Development Report EPA-600/S7-81-004, p 302.

  • Xie P, Li WP, Yang DD, Jiao JJ (2018) Hydrogeological model for groundwater prediction in the Shennan mining area. China Mine Water Environ 37(3):505–517

    Article  Google Scholar 

  • Xie HJ, Li J, Dong Y, Li GY, Han ZH (2021) Fast Fisher discrimination of water-rich burnt rock based on DC electrical sounding data. Mine Water Environ 40(2):539–546

    Article  Google Scholar 

  • Xu YJ, Ma LQ, Khan NM (2020) Prediction and maintenance of water resources carrying capacity in mining area-a case study in the Yu-Shen mining area. Sustainability 12(18):7782

    Article  Google Scholar 

  • Yang QC, Wang LC, Ma HY, Yu K, Martin JD (2016) Hydrochemical characterization and pollution sources identification of groundwater in Salawusu aquifer system of Ordos Basin, China. Environ Pollut 216:340–349

    Article  Google Scholar 

  • Yuan Y, Liu ZH, Zhu C, Yuan CF, Wang SZ (2019) The effect of burnt rock on inclined shaft in shallow coal seam and its control technology. Energy Sci Eng 7(5):1882–1895

    Article  Google Scholar 

  • Zhang L, Liu CY, Fayek M, Wu BL, Lei KY, Cun XN, Sun L (2017) Hydrothermal mineralization in the sandstone–hosted Hangjinqi uranium deposit, north Ordos Basin, China. Ore Geol Rev 80:103–115

    Article  Google Scholar 

  • Zhang Y, Cao SG, Guo S, Wan T, Wang JJ (2018) Mechanisms of the development of water-conducting fracture zone in overlying strata during shortwall block backfill mining: a case study in northwestern China. Environ Earth Sci 77(14):543

    Article  Google Scholar 

  • Zhang L, Liu CY, He XY (2019a) Discovery of kilometer-scale uplift and exhumation related to the Late Indosinian movement in the northern Ordos Basin. North China Acta Geol Sin-Engl 93(1):231–232

    Article  Google Scholar 

  • Zhang Z, Yan DT, Zhuang XG, Yang SG, Wang G, Li GQ, Wang XM (2019b) Hydrogeochemistry signatures of produced waters associated with coalbed methane production in the southern Junggar Basin, NW China. Environ Sci Pollut Res 26:31956–31980

    Article  Google Scholar 

  • Zhang Z, Li GQ, Su XB, Zhuang XG, Wang L, Fu HJ, Li L (2021) Geochemical controls on the enrichment of fluoride in the mine water of the Shendong mining area. China Chemos 284:131388

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant 42002195; Shaanxi Province Natural Science Basic Research Program Joint Foundation under Grant 2019JL-01; Shaanxi Province Natural Science Foundation of China under Grant 2019JQ-192; Special Research Project of Natural Science of Education Department of Shaanxi Province under Grant 20JK0752; China Postdoctoral Science Foundation under Grant 2018M631181; Foundation Research Project of Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation under Grant MTy2019-08; Outstanding Youth Science Fund of Xi'an University of Science and Technology under Grant 2021-14; Open Fund of Key Laboratory of Coalbed Methane Resources and Reservoir Formation Process of the Ministry of Education (China University of Mining and Technology) under Grant 2020-002; and Major Science and Technology Project of Inner Mongolia Autonomous Region under Grant 2021ZD0034-3. Professor Jinpeng Xu and Professor Yong Qin from China University of Mining and Technology provided valuable suggestions for this publication. We thank everyone that contributed to this publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chen Guo.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, C., Gao, J., Wang, S. et al. Groundwater Geochemical Variation and Controls in Coal Seams and Overlying Strata in the Shennan Mining Area, Shaanxi, China. Mine Water Environ 41, 614–628 (2022). https://doi.org/10.1007/s10230-022-00867-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00867-6

Keywords

  • Groundwater chemistry
  • Northern Shaanxi
  • Water–rock interaction
  • Jurassic coal-bearing strata
  • Hydrogeological model