Skip to main content
Log in

Experimental Investigation on the Transport Behavior of a Sand/Mud/Water Mixture Through a Mining-Induced Caving Zone

Experimentelle Untersuchung des Transportverhaltens eines Sand-Schlamm-Wasser-Gemisches beim Einbruch durch einen bergbaubedingten Hohlraum

Investigación experimental sobre el comportamiento del transporte de una mezcla de arena y lodo a través de una zona de espeleología provocada por la minería

水砂混合物在采动覆岩垮落带中的运移特性试验研究

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The transport of sand particles through various mining-induced caving zones was investigated experimentally under different initial infiltration water heads. These experiments were performed in a laboratory-scale caving zone packed with glass beads, using four different sizes of sand grains. The transports were categorized into two different patterns: seepage and driven. The probability of the driven pattern was greatly increased by increasing the height of the initial water head and the size ratio Rs (the ratio of glass beads to sand particles by diameter). The sand portion of the sand/mud/water mixture had a high transport rate while the water had a low one in the mixture. Both rates increased with increasing initial water head height, with a larger increase in the sand transport rate than the water flow rate. The water flow rate is primarily governed by the permeability of the sand layer, while the sand transport rate is greatly affected by Rs. These findings provide an insight into the mechanism of sand/mud/water mixture inrushes and a potential design idea for its control and treatment.

Zusammenfassung

Der Transport von Sandpartikeln durch verschiedene bergbauinduzierte Hohlräume wurde experimentell unter verschiedenen anfänglichen Infiltrationswasserhöhen s untersucht. Diese Experimente wurden in einer mit Glaskugeln gefüllten Hohlraumzone im Labormaßstab unter Verwendung von vier verschiedenen Größen von Sandkörnern durchgeführt. Die Transporte wurden in zwei verschiedene Muster eingeteilt: Sickerwasser und Wasser unter Druck. Die Wahrscheinlichkeit des druckbedingten Musters wurde stark erhöht, indem die Höhe der anfänglichen Wassersäule und das Größenverhältnis R s (das Verhältnis von Glasperlen zu Sandpartikeln nach Durchmesser) erhöht wurden. Der Sandanteil des Sand-Schlamm-Wasser-Gemischs wies eine hohe Transportrate auf, während das Wasser im Gemisch eine niedrige Rate hatte. Beide Raten nahmen mit zunehmender anfänglicher Wassersäule zu, wobei die Sandtransportrate stärker anstieg als die Wasserdurchflussrate. Die Wasserdurchflussrate wird in erster Linie von der Durchlässigkeit der Sandschicht bestimmt, während die Sandtransportrate stark von R s beeinflusst wird. Die Ergebnisse geben einen Einblick in den Mechanismus von Sand/Schlamm/Wasser-Gemischen und liefern einen möglichen Ansatz für Kontrolle und Behandlung von Sandeinbrüchen.

Resumen

Se investigó experimentalmente el transporte de partículas de arena a través de varias zonas de espeleología provocadas por la minería bajo diferentes alturas iniciales de agua de infiltración s. Estos experimentos se realizaron en una zona de espeleología a escala de laboratorio rellena de perlas de vidrio, utilizando cuatro tamaños diferentes de granos de arena. Los transportes se clasificaron en dos patrones diferentes: de infiltración y conducido. La probabilidad de ocurrencia del patrón impulsado se incrementó en gran medida al aumentar la altura de la cabeza de agua inicial y la relación de tamaño R s (la relación entre las perlas de vidrio y las partículas de arena por diámetro). La parte de arena de la mezcla de arena/lodo/agua tenía una tasa de transporte alta mientras que el agua tenía una tasa baja en la mezcla. Ambas tasas se incrementaron con el aumento de la altura inicial de la cabeza del agua, con un mayor aumento en la tasa de transporte de arena que la tasa de flujo de agua. La tasa de flujo de agua se rige principalmente por la permeabilidad de la capa de arena, mientras que la tasa de transporte de arena se ve muy afectada por R s. Estos resultados proporcionan una visión del mecanismo de las irrupciones de la mezcla de arena, lodo y agua, y una posible idea de diseño para su control y tratamiento.

摘要

室内试验研究了砂粒在不同初始水头高度下穿过各种采动覆岩垮落带的运移特性. 室内试验用压实的玻璃珠模拟垮落带破碎岩体, 选取了四种不同粒径的砂粒粒组. 垮落带中的水砂运移分为两种模式:渗流型和驱动型. 随着初始水头高度和粒径比Rs (玻璃珠与砂粒的直径之比) 的增加, 驱动型运移模式发生的概率大幅增加. 水砂混合物中砂颗粒运移速度大, 而水的运移速度小. 砂和水的运移速度均随着初始水头高度的升高而增大, 砂的运移速度的增幅比水的更大. 水运移的速度主要受砂层渗透性的控制, 而砂运移的速度受粒径比 (Rs)的 影响较大. 研究加深了水砂混合物突溃机理的认识, 也为突水溃砂灾害的防治提供了新思路.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agbangla GC, Climent É, Bacchin P (2012) Experimental investigation of pore clogging by microparticles: evidence for a critical flux density of particle yielding arches and deposits. Sep Purif Technol 101:42–48

    Article  Google Scholar 

  • Ahfir ND, Wang HQ, Benamar A, Alem A, Massei N, Dupont JJ (2007) Transport and deposition of suspended particles in saturated porous media: hydrodynamic effect. Hydrogeol J 15(4):659–668

    Article  Google Scholar 

  • Ahfir ND, Hammadi A, Alem A, Wang HQ, Bras GL, Ouahbi T (2017) Porous media grain size distribution and hydrodynamic forces effects on transport and deposition of suspended particles. J Environ Sci 53:161–172. https://doi.org/10.1016/j.jes.2016.01.032

    Article  Google Scholar 

  • Ballio F, Nikora V, Coleman SE (2014) On the definition of solid discharge in hydro-environment research and applications. J Hydraul Res 52(2):173–184. https://doi.org/10.1080/00221686.2013.869267

    Article  Google Scholar 

  • Benamar A, Ahfir ND, Wang H, Alem A (2007) Particle transport in a saturated porous medium: pore structure effects. CR Geosci 339(10):674–681

    Article  Google Scholar 

  • Biswas D, Kartha SA (2019) Conceptual modeling of temperature effects on capillary pressure in dead-end pores. Sādhanā 44(5):1–12. https://doi.org/10.1007/s12046-019-1108-y

    Article  Google Scholar 

  • Butcher R, Stacey TR, Joughin WC (2005) Mud rushes and methods of combating them. J South Afr Inst Min Metall 105(11):817

    Google Scholar 

  • Campbell CS (2006) Granular material flows–an overview. Powder Technol 162(3):208–229

    Article  Google Scholar 

  • Chen ZQ, Yu BY (2015) Research progress of seepage mechanics in rock mass affected by mining. J SW Petrol Univ Sci Tech 37(3):69–76 ((in Chinese))

    Google Scholar 

  • Chen LW, Zhang SL, Gui HR (2014) Prevention of water and quicksand inrush during extracting contiguous coal seams under the lowermost aquifer in the unconsolidated Cenozoic alluvium-a case study. Arab J Geosci 7:2139–2149. https://doi.org/10.1007/s12517-013-1029-8

    Article  Google Scholar 

  • Chen JR, Pu H, Xiao C, Liu GH (2016) Experimental study of impact of deformation history on water-sand seepage characteristics of broken rock. J Min Safe Eng 33(2):329–335 ((in Chinese))

    Google Scholar 

  • Chen B, Zhang SC, Li YY, Li JP (2021) Experimental study on water and sand mixture inrush of mining cracks in loose layers with different clay contents. Bull Eng Geol Environ 80:663–678. https://doi.org/10.1007/s10064-020-01941-5

    Article  Google Scholar 

  • China Central Television (2021) Water and sand mixture inrush hazard occurred in Haojialiang coal mine in Yulin Shanxi. https://news.cctv.com/2021/07/16/ARTIZ3hTbE9ULARMERFHt52o210716.shtml. Accessed 19 Jul 2021

  • Cochard S, Ancey C (2009) Experimental investigation of the spreading of viscoplastic fluids on inclined planes. J Nonnewton Fluid Mech 158(1):73–84. https://doi.org/10.1016/j.jnnfm.2008.08.007

    Article  Google Scholar 

  • Dept. of Emergency Management of Shaanxi Province (2021) Report of 7.15 water and sand disaster in Haojialiang coal mine, Yulin. https://www.163.com/dy/article/GFCO0BUK0538N2MQ.html Accessed 20 Jul 2021

  • Dong SN, Ji YD, Wang H, Zhao BF, Cao HD, Liu Y, Liu YF, Ji ZK, Liu BG (2020) Prevention and control technology and application of roof water disaster in Jurassic coal field of Ordos Basin. J Chin Coal Soc 45(7):2367–2375 ((in Chinese))

    Google Scholar 

  • Du F, Li ZH, Jiang GH, Chen ZQ (2017) Types and mechanism of water-sand inrush disaster in west coal mine. J Chin Coal Soc 42(7):1846–1853 ((in Chinese))

    Google Scholar 

  • Du F, Cao ZZ, Li ZH (2018a) Research progress of two-phase water-sand flow characteristics in crushed rock mass. Coal Sci Technol 46(7):48–53 ((in Chinese))

    Google Scholar 

  • Du F, Jiang GH, Chen ZQ (2018b) A numerical simulation study of the migration law of water-sand two-phase flow in broken rock mass. Geofluids 2018:1–12. https://doi.org/10.1155/2018/6418476

    Article  Google Scholar 

  • Forterre Y, Pouliquen O (2008) Flows of dense granular media. Annu Rev Fluid Mech 40:1–24

    Article  Google Scholar 

  • Furbish DJ, Fathel SL, Schmeeckle MW, Jerolmack DJ, Schumer R (2017) The elements and richness of particle diffusion during sediment transport at small timescales. Earth Surf Process Landf 42(1):214–237

    Article  Google Scholar 

  • Goldhirsch I (2003) Rapid granular flows. Annu Rev Fluid Mech 35(1):267–293

    Article  Google Scholar 

  • Guo WJ, Wang HL, Chen SJ, Li JP (2016) Development and application of simulation test system for water and sand mixture inrush across overburden fissures due to coal mining. Chin J Rock Mech Eng 35(7):1415–1422 ((in Chinese))

    Google Scholar 

  • Haza ZF, Harahap ISH, Dakssa LM (2013) Experimental studies of the flow-front and drag forces exerted by subaqueous mudflow on inclined base. Nat Hazards. https://doi.org/10.1007/s11069013-0643-9

    Article  Google Scholar 

  • Imdakm AO, Sahimi M (1987) Transport of large particles in flow through porous media. Phys Rev A 36(11):5304

    Article  Google Scholar 

  • Jung J, Cao SC, Shin YH, Al-Raoush RI, Alshibli K, Choi JW (2018) A microfluidic pore model to study the migration of fine particles in single-phase and multi-phase flows in porous media. Microsyst Technol 24(2):1071–1080. https://doi.org/10.1007/s00542-017-3462-1

    Article  Google Scholar 

  • Kerimov A, Mavko G, Mukerji T, Ibrahim MA (2018) Mechanical trapping of particles in granular media. Phys Rev E 97(2):022907

    Article  Google Scholar 

  • Li Z, Sui WH, Zhang XJ (2016) Experimental investigation on movement and stress fluctuation of quicksand inside fissure. J Eng Geol 24(5):981–991 ((in Chinese))

    Google Scholar 

  • Liang YK, Sui WH, Zhu T, Zhang XJ (2017) Numerical simulation of quicksand through the broken rocks in caving zone due to coal mining based on DEM. J Chin Coal Soc 42(2):470–476 ((in Chinese))

    Google Scholar 

  • Liu Y, Li SC (2016) Influence of particle size on non-Darcy seepage of water and sediment in fractured rock. Springerplus 5(1):2099. https://doi.org/10.1186/s40064-016-3778-9

    Article  Google Scholar 

  • Locke M, Indraratna B, Adikari G (2001) Time-dependent particle transport through granular filters. J Geotech Geoenviron 127(6):521–529

    Article  Google Scholar 

  • Miao XX, Wang CS, Bai HB (2010) Hydrogeologic characteristics of mine water hazards in the Shendong mining area. J Min Safe Eng 27(3):285–291 (in Chinese)

    Google Scholar 

  • Neuman SP, Tartakovsky DM (2009) Perspective on theories of non-Fickian transport in heterogeneous media. Adv Water Resour 32(5):670–680

    Article  Google Scholar 

  • Pinheiro IG, Schmitz P, Houi D (1999) Particle capture in porous media when physico-chemical effects dominate. Chem Eng Sci 54(17):3801–3813

    Article  Google Scholar 

  • Qian QH (2012) Challenges faced by underground projects construction safety and countermeasures. Chin J Rock Mech Eng 31(10):1945–1956 ((in Chinese))

    Google Scholar 

  • Qian ZW, Jiang ZQ, Guan YZ, Yue N (2019) Mechanism and remediation of water and sand mixture inrush induced in an inclined shaft by large-tonnage vehicles. Mine Water Environ 37:849–855. https://doi.org/10.1007/s10230-018-0531-3

    Article  Google Scholar 

  • Raafat T, Hulin JP, Herrmann HJ (1996) Density waves in dry granular media falling through a vertical pipe. Phys Rev E 53(5):4345

    Article  Google Scholar 

  • Racha Medjda BK, Abdelghani CF, Maxime P, Zohra GF (2020) The trapping of colloid particles in porous media: mechanisms and applications, review. J Appl Res Water Wastewater 7(2):180–188

    Google Scholar 

  • Reddi LN (1997) Particle transport in soils: review of significant processes in infrastructure systems. J Infrastruct Syst 3(2):78–86

    Article  Google Scholar 

  • Reydellet G, Rioual F, Clement E (2000) Granular hydrodynamics and density wave regimes in a vertical chute experiment. Europhys Lett 51(1):27

    Article  Google Scholar 

  • Sherard JL, Dunnigan LP, Talbot JR (1984) Basic properties of sand and gravel filters. J Geotech Eng 110(6):684–700

    Article  Google Scholar 

  • Sui WH, Cai GT, Dong QH (2007) Experimental research on critical percolation gradient of quicksand across overburden fissures due to coal mining near unconsolidated soil layers. Chin J Rock Mech Eng 26(10):2084–2091 ((in Chinese))

    Google Scholar 

  • Sui WH, Dong QH, Cai GT, Yang WF, Hang Y (2008) Quicksand hazards in underground coal mines: mechanism and prevention. Geological Publishing House, Beijing (in Chinese)

    Google Scholar 

  • Sui WH, Liang YK, Zhang GL, Dong QH, Yang BB (2011) Study status and outlook of risk evaluation on water inrush and sand inrush mechanism of excavation and mining. Coal Sci Technol 39(11):5–9 ((in Chinese))

    Google Scholar 

  • Sui WH, Liang YK, Zhang XJ, Ravi J, Zhu T (2017) An experimental investigation on the speed of sand flow through a fixed porous bed. Sci Rep 7(54):1–8. https://doi.org/10.1038/s41598-017-00082-2

    Article  Google Scholar 

  • Tartakovsky DM, Dentz M (2019) Diffusion in porous media: phenomena and mechanisms. Transport Porous Med 130(1):105–127

    Article  Google Scholar 

  • Valdes JR, Santamarina JC (2008) Clogging: bridge formation and vibration-based destabilization. Can Geotech J 45(2):177–184

    Article  Google Scholar 

  • Wu FC, Huang HT (2000) Hydraulic resistance induced by deposition of sediment in porous medium. J Hydraul Eng 126(7):547–551

    Article  Google Scholar 

  • Xu YC (2008) Fluidity test on sand blended with clay. J Chin Coal Soc 33(5):496–499 ((in Chinese))

    Google Scholar 

  • Xue YG, Kong FM, Li SC, Qiu DH, Su MX, Li ZQ (2021) Water and mud inrush hazard in underground engineering: genesis, evolution and prevention. Tunn Undergr Sp Tech 114:103987. https://doi.org/10.1016/j.tust.2021.103987

    Article  Google Scholar 

  • Yang X, Xu ZH, Yang TH, Yang B, Shi WH (2018) Incipience criterion and migration character of aeolian-sand aquifer water-sand inrush in typical western mine. Rock Soil Mech 39(1):1–9 ((in Chinese))

    Google Scholar 

  • Yang B, Yang TH, Xu ZH, Liu HL, Yang X, Shi WH (2019a) Impact of particle-size distribution on flow properties of a packed column. J Hydrol Eng 24(3):04018070

    Article  Google Scholar 

  • Yang WF, Jin L, Zhang XQ (2019b) Simulation test on mixed water and sand mixture inrush disaster induced by mining under the thin bedrock. J Loss Prev Process Ind 57:1–6. https://doi.org/10.1016/j.jlp.2018.11.007

    Article  Google Scholar 

  • Yang X, Liu YJ, Xue M, Yang TH, Yang B (2020) Experimental investigation of water–sand mixed fluid initiation and migration in porous skeleton during water and sand mixture inrush. Geofluids 2020(12):1–18. https://doi.org/10.1155/2020/8679861

    Article  Google Scholar 

  • Zhang J, Hou ZJ (2005) Study on sand inrush disaster in shallow seam mining. J Hunan U Sci Tech Nat Sci 20(3):15–18 (in Chinese)

    Google Scholar 

  • Zhang GM, Zhang K, Wang LJ (2015) Mechanism of water inrush and quicksand movement induced by a borehole and measures for prevention and remediation. B Eng Geol Environ 74(4):1395–1405. https://doi.org/10.1007/s10064-014-0714-5

    Article  Google Scholar 

  • Zhang C, Zhao YX, Tu SH, Zhang T (2020) Numerical simulation of compaction and re-breakage characteristics of coal and rock samples in goaf. Chin J Geotech Eng 42(4):696–704 (in Chinese)

    Google Scholar 

  • Zhang BY, He QY, Lin ZB, Li ZH (2021) Experimental study on the flow behaviour of water-sand mixtures in fractured rock specimens. Int J Min Sci Technol 31(3):377–385. https://doi.org/10.1016/j.ijmst.2020.09.001

    Article  Google Scholar 

  • Zhao Y, Li P, Tian S (2013) Prevention and treatment technologies of railway tunnel water inrush and mud gushing in China. J Rock Mech Geotech Eng 5(6):468–477. https://doi.org/10.1016/j.jrmge.2013.07.009

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge financial support from the National Natural Science Foundation of China under Grant 41902283 and 42130706. The authors thank Shichong Yuan and Jiahao Wang of the China University of Mining and Technology for their assistance with the testing.

Funding

This work was supported by National Natural Science Foundation of China (Grant Nos. 42130706 and 41902283).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanghua Sui.

Supplementary Information

Below is the link to the electronic supplementary material.

10230_2022_852_MOESM1_ESM.pdf

Fig. S1: Grain size distribution of Aeolian sand in western China and the Quaternary bottom aquifer sand in eastern Chinese coal mines (PDF 15 KB)

Fig. S2: The instantaneous and time-averaged water flow rate for (H, D, d) = (900, 21, 0.25-0.5) (PDF 16 KB)

10230_2022_852_MOESM3_ESM.pdf

Fig. S3: Variations in the water and sand transport rates under different hydrodynamic conditions for (D, d) = (21, 0.25-0.5) (PDF 14 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Sui, W., Jiang, T. et al. Experimental Investigation on the Transport Behavior of a Sand/Mud/Water Mixture Through a Mining-Induced Caving Zone. Mine Water Environ 41, 629–639 (2022). https://doi.org/10.1007/s10230-022-00852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-022-00852-z

Keywords

Navigation