Skip to main content

Advertisement

Log in

Water Seepage Mapping in an Underground Coal-Mine Barrier Using Self-potential and Electrical Resistivity Tomography

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Seepage of water through an underground coal-mine barrier is a common indicator of a potential hydrogeological hazard. The Jharia coalfield has witnessed several deadly inundation events in different underground mines. The present study deals with the mapping of water seepage through an underground coal-mine barrier of the Jogidih Colliery, Jharia coalfield using self-potential (SP) and electrical resistivity tomography (ERT). Initially, numerical analysis of the SP data was carried out using particle swarm optimization (PSO) and simulated annealing (SA) inversion, which indicated the suitability of both PSO and SA, though the PSO algorithm performed better. ERT analysis of a synthetic model similar to the present underground coal-mine environment was also carried out using Wenner, Schlumberger, and dipole–dipole array configurations, which indicated that the dipole–dipole configuration was the most effective. Subsequently, the SP data collected from the underground coal-mine barrier were analyzed using PSO and SA; both designated the presence of seepage within the barrier and provided information concerning its geometry and location. It is argued that these SP anomalies are a direct result of transmutations in the streaming potential produced by preferential drainage through the barrier. Following the SP results, ERT was used for detailed high-resolution imaging of the barrier seepage/leakage drainage. Furthermore, the results obtained from ERT and SP were compared to understand their efficacy in resolving seepage detection complications and result validation. The combined study suggests a cylindrical geometry of seepage from an adjacent sump pit through the coal-mine barrier. Physicochemical analysis of the groundwater in the mining area indicates high sulfate levels.

Resumen

La filtración de agua a través de la barrera de una mina de carbón subterránea es un indicador común de un riesgo hidrogeológico potencial. La cuenca carbonífera de Jharia ha sido testigo de varias inundaciones mortales en diferentes minas subterráneas. El presente estudio trata de la cartografía de la filtración de agua a través de una barrera subterránea de la mina de carbón de Jogidih Colliery, en la cuenca carbonífera de Jharia, utilizando el autopotencial (SP) y la tomografía de resistividad eléctrica (ERT). Inicialmente, el análisis numérico de los datos de SP se llevó a cabo utilizando la optimización por nube de partículas (PSO) y la inversión de recocido simulado (SA), lo que indicó la idoneidad tanto de PSO como de SA aunque el primero tuvo un mejor rendimiento. También se llevó a cabo el análisis de ERT de un modelo sintético similar al entorno actual de la mina de carbón subterránea utilizando configuraciones de Wenner, Schlumberger y dipolo-dipolo, que indicaron que la configuración dipolo-dipolo era la más eficaz. Posteriormente, los datos de SP recogidos en la barrera de la mina de carbón subterránea se analizaron mediante PSO y SA; ambos designaron la presencia de filtraciones dentro de la barrera y proporcionaron información sobre su geometría y ubicación. Se argumenta que estas anomalías de SP son el resultado directo de transmutaciones en el potencial de flujo producidas por el drenaje preferencial a través de la barrera. Tras los resultados de SP, se utilizó la ERT para obtener imágenes detalladas de alta resolución del drenaje de la barrera por infiltración/filtración. Además, se compararon los resultados obtenidos con ERT y SP para comprender su eficacia en la resolución de las complicaciones de la detección de filtraciones y la validación de los resultados. El estudio combinado sugiere una geometría cilíndrica de la filtración desde un pozo adyacente a través de la barrera de la mina de carbón. El análisis fisicoquímico de las aguas subterráneas de la zona minera indica altos niveles de sulfato.

Zusammenfassung

Das Eindringen von Wasser durch eine unterirdische Grubenbarriere ist ein gängiger Indikator für eine potenzielle hydrogeologische Gefahr. Das Jharia-Kohlenfeld war Ort mehrerer tödlicher Überflutungsereignisse in verschiedenen unterirdischen Bergwerken. Die vorliegende Studie befasst sich mit der Kartierung von Sickerwasser durch eine unterirdische Grubenbarriere im Bergwerk Jogidih im Jharia-Kohlenrevier unter Verwendung des Eigenpotentials (SP) und der elektrischen Widerstands-Tomographie (ERT). Zunächst wurde eine numerische Analyse der SP-Daten mit Hilfe von Partikelschwarmoptimierung (PSO) und Simulated Annealing (SA) Inversion durchgeführt, die auf die Eignung sowohl von PSO als auch SA hinwies, wobei der PSO-Algorithmus besser abschnitt. Die ERT-Analyse eines synthetischen Modells, das der gegenwärtigen unterirdischen Grubenumgebung ähnelt, wurde auch unter Verwendung von Wenner-, Schlumberger- und Dipol-Dipol-Array-Konfigurationen durchgeführt, wobei sich die Dipol-Dipol-Konfiguration als effektivste erwies. Anschließend wurden die SP-Daten, die von der unterirdischen Grubenbarriere gesammelt wurden, mit PSO und SA analysiert; beide wiesen auf das Vorhandensein von Sickerwasser innerhalb der Barriere hin und lieferten Informationen über deren Geometrie und Lage. Es wird argumentiert, dass diese SP-Anomalien ein direktes Ergebnis von Transmutationen im Strömungspotenzial sind, die durch bevorzugte Drainage durch die Barriere erzeugt werden. Im Anschluss an die SP-Ergebnisse wurde ERT für eine detaillierte, hochauflösende Darstellung der Sicker-/Leckage-Drainage der Barriere verwendet. Darüber hinaus wurden die mit ERT und SP erzielten Ergebnisse verglichen, um ihre Wirksamkeit bei der Lösung von Komplikationen bei der Sickerwassererkennung und der Ergebnisvalidierung zu verstehen. Die kombinierte Studie deutet auf eine zylindrische Geometrie des Sickerwasserpfads aus eines angrenzenden Pumpensumpfs durch die Barriere hin. Die physikochemische Analyse des Grundwassers im Bergbaugebiet weist auf hohe Sulfatwerte hin.

井下保护煤柱渗水是一种常见的矿井水文地质灾害预兆。Jharia煤田的不同矿井曾发生过多次致命淹井事故。利用自然电位(SP)和电阻率层析成像(ERT)绘制出Jharia煤田Jogidih矿的井下保护煤柱渗流图像。首先, 用粒子群优化(PSO)和模拟退火反演(SA)数值分析了自然电位(SP)数据, 显示PSO和SA方法都适用, PSO算法效果更好。利用Wenner、Schlumberger和赤道偶极剖面法对目前煤矿井下环境的综合模型进行了电阻率层析成像 (ERT) 分析, 赤道偶极剖面法效果最好。然后, 利用PSO和SA方法分析了井下保护煤柱的自然电位 (SP) 采集数据, 两种方法都显示保护煤柱内存在渗流, 给出了渗流区的形状和位置信息。认为自然电位 (SP) 异常是优先流穿过煤柱时引起自然电位突变的直接结果。在自然电位 (SP) 结基础上, 用电阻率层析成像 (ERT) 绘制出了更详尽的高分辨率保护煤柱渗流图像。此外, 对比自然电位(SP)和电阻率层析成像(ERT)结果, 进一步理解它们在复杂渗流探测和结果验证方面的有效性。综合研究表明柱状渗流从邻近坑底水仓穿过了保护煤柱。物理化分析显示矿区地下水的硫酸盐含量较高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Abdelrahman ES, El-Araby HM, Hassaneen AR, Mahfooz AH (2003) New methods for shape and depth determinations from SP data. Geophysics 6:1202–1210

    Article  Google Scholar 

  • Arsène M, Wassouo Elvis BW, Daniel G, Théophile NM, Kelian K, Daniel NJ (2018) Hydrogeophysical investigation for groundwater resources from electrical resistivity tomography and self-potential data in the Méiganga area, Adamawa. Cameroon Int J Geophys. https://doi.org/10.1155/2018/2697585

    Article  Google Scholar 

  • Bharti AK, Pal SK, Ranjan SK, Kumar R, Priyam P, Pathak VK (2016a) Coal mine cavity detection using electrical resistivity tomography-a joint inversion of multi array data. Proc, Near Surface Geoscience, 22nd European Meeting of Environmental and Engineering Geophysics, European Assoc of Geoscientists & Engineers. Doi:https://doi.org/10.3997/2214-4609.201602084

  • Bharti AK, Pal SK, Priyam P, Pathak VK, Kumar R, Ranjan SK (2016b) Detection of illegal mine voids using electrical resistivity tomography: the case-study of Raniganj coalfield (India). Eng Geol 213:120–132. https://doi.org/10.1016/j.enggeo.2016.09.004

    Article  Google Scholar 

  • Bharti AK, Pal SK, Priyam P, Kumar S, Shalivahan and Yadav PK, (2016c) Subsurface cavity detection over Patherdih colliery, Jharia Coalfield, India using electrical resistivity tomography. Environ Earth Sci 75:1–17. https://doi.org/10.1007/s12665-015-5025-z

    Article  Google Scholar 

  • Bharti AK, Pal SK, Singh KKK, Singh PK, Prakash A, Tiwary RK (2019) Groundwater prospecting by the inversion of cumulative data of Wenner-Schlumberger and dipole–dipole arrays. A case study at Turamdih, Jharkhand, India. J Earth Syst Sci 128:107

    Article  Google Scholar 

  • Bhattacharya BB, Roy N (1981) A note on the use of a nomogram for self-potential anomalies. Geophys Prospect 29:102–107

    Article  Google Scholar 

  • Biswas A, Sharma SP (2015) Interpretation of self-potential anomaly over idealized bodies and analysis of ambiguity using very fast simulated annealing global optimization technique. Near Surf Geophys 13:179–195

    Article  Google Scholar 

  • Borm G, Giese R, Otto P, Amberg F, Dickmann T (2003) Integrated seismic imaging system for geological prediction during tunnel construction. Int Soc Rock Mech Rock Eng

  • Brunet P, Clément R, Bouvier C (2010) Monitoring soil water content and deficit using electrical resistivity tomography (ERT)–A case study in the Cevennes area, France. J Hydrol 380:146–153

    Article  Google Scholar 

  • Dahlin T, Bernstone C, Loke MH (2002) A 3-D resistivity investigation of a contaminated site at Lernacken, Sweden. Geophysics 67:1692–1700

    Article  Google Scholar 

  • Das P, Pal SK, Mohanty PR, Priyam P, Bharti AK, Kumar R (2017) Abandoned mine galleries detection using electrical resistivity tomography method over Jharia coal field, India. J Geol Soc India 90:169–174

    Article  Google Scholar 

  • deGroot-Hedlin C (1995) Inversion for regional 2-D resistivity structure in the presence of galvanic scatterers. Geophys J Int 122:877–888

    Article  Google Scholar 

  • Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. InMHS'95. Proc, 6th International Symp on Micro Machine and Human Science, pp 39–43

  • El-Araby HM (2004) A new method for complete quantitative interpretation of self-potential anomalies. J Appl Geophys 55:211–224

    Article  Google Scholar 

  • Essa K, Mehanee S, Smith PD (2008) A new inversion algorithm for estimating the best fitting parameters of some geometrically simple body to measured self-potential anomalies. Explor Geophys 39:155–163

    Article  Google Scholar 

  • Evers GI, Ghalia MB (2009) Regrouping particle swarm optimization: a new global optimization algorithm with improved performance consistency across benchmarks. Proc, IEEE International Conf on Systems, Man and Cybernetics, pp 3901–3908

  • Fang L, Chen P, Liu S (2007) Particle swarm optimization with simulated annealing for TSP. Proc, 6th WSEAS International Conf on Artificial Intelligence, Knowledge Engineering and Data Bases pp 206–210

  • Farquharson CG, Oldenburg DW (2004) A comparison of automatic techniques for estimating the regularization parameter in non-linear inverse problems. Geophys J Int 156(3):411–425

    Article  Google Scholar 

  • Göktürkler G, Balkaya Ç (2012) Inversion of self-potential anomalies caused by simple-geometry bodies using global optimization algorithms. J Geophys Eng 9:498–507

    Article  Google Scholar 

  • Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226

    Article  Google Scholar 

  • Guireli Netto L, Malagutti Filho W, Gandolfo OC (2020) Detection of seepage paths in small earth dams using the self-potential method (SP). REM-Int Eng J 73:303–310

    Article  Google Scholar 

  • Guo Q, Nie L, Li N, Yang W, Lin C, Liu B, Shi Y (2019) Water-bearing body prospecting ahead of tunnel face using moving electrical-source method. Geotech Geol Eng 37:2047–2064

    Article  Google Scholar 

  • Gupta RK, Agrawal M, Pal SK, Kumar R, Srivastava S (2019) Site characterization through combined analysis of seismic and electrical resistivity data at a site of Dhanbad, Jharkhand, India. Environ Earth Sci. https://doi.org/10.1007/s12665-019-8231-2

    Article  Google Scholar 

  • Henderson RD, Day-Lewis FD, Abarca E, Harvey CF, Karam HN, Liu L, Lane JW (2010) Marine electrical resistivity imaging of submarine groundwater discharge: sensitivity analysis and application in Waquoit Bay, Massachusetts, USA. Hydrogeol J 18:173–185

    Article  Google Scholar 

  • Horo D, Pal SK, Singh S (2020) Mapping of gold mineralization in Ichadih, north Singhbhum mobile belt, India using electrical resistivity tomography and self-potential methods. Min Metallurg Explor. https://doi.org/10.1007/s42461-020-00340-4

    Article  Google Scholar 

  • Horo D, Pal SK, Singh S, Srivastava S (2020b) Combined self-potential, electrical resistivity tomography and induced polarisation for mapping of gold prospective zones over a part of Babaikundi-Birgaon Axis, north Singhbhum mobile belt. India Explor Geophys 51(1):507–522

    Article  Google Scholar 

  • Ikard SJ, Revil A (2014) Self-potential monitoring of a thermal pulse advecting through a preferential flow path. J Hydrol 519:34–49

    Article  Google Scholar 

  • Ikard SJ, Revil A, Jardani A, Woodruff WF, Parekh M, Mooney M (2012) Saline pulse test monitoring with the self-potential method to nonintrusively determine the velocity of the pore water in leaking areas of earth dams and embankments. Water Resour Res. https://doi.org/10.1029/2010WR010247

    Article  Google Scholar 

  • Ikard SJ, Rittgers J, Revil A, Mooney MA (2015) Geophysical investigation of seepage beneath an earthen dam. Groundwater 53:238–250

    Article  Google Scholar 

  • Inazaki T, Isahai H, Kawamura S, Kurahashi T, Hayashi H (1999) Stepwise application of horizontal seismic profiling for tunnel prediction ahead of the face. Lead Edge 18:1429–1431

    Article  Google Scholar 

  • Jardani A, Dupont JP, Revil A (2006) Self-potential signals associated with preferential groundwater flow pathways in sinkholes. J Geophys Res-Sol Ea. https://doi.org/10.1029/2005JB004231

    Article  Google Scholar 

  • Jardani A, Revil A, Akoa F, Schmutz M, Florsch N, Dupont JP (2006) Least squares inversion of self-potential (SP) data and application to the shallow flow of ground water in sinkholes. Geophys Res Lett. https://doi.org/10.1029/2006GL027458

    Article  Google Scholar 

  • Javidrad F, Nazari M (2017) A new hybrid particle swarm and simulated annealing stochastic optimization method. Appl Soft Comp 60:634–654

    Article  Google Scholar 

  • Jetschny S, Bohlen T, Kurzmann A (2011) Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophys Prospect 59:934–946

    Google Scholar 

  • Kannaujiya S, Philip G, Champati Ray PK, Pal SK, Taloor AK (2020) Integrated geophysical techniques for subsurface imaging of active deformation across the Himalayan frontal thrust in Singhauli, Kala Amb, India. Quatern Int. https://doi.org/10.1016/j.quaint.2020.05.003

    Article  Google Scholar 

  • Kaus A, Boening W (2008) BEAM–Geoelectrical ahead monitoring for TBM-drives. Geomechanik Tunnelbau 5:442–449

    Article  Google Scholar 

  • Kayode OT, Odukoya AM, Adagunodo TA, Adeniji AA (2018) Monitoring of seepages around dams using geophysical methods: a brief review. Earth Environ Sci 173:012026

    Google Scholar 

  • Kennedy J (2010) Encyclopedia of Machine Learning. Particle Swarm Optimization. Springer, USA, pp 760–766

    Google Scholar 

  • Kerkri A, Allal J, Zarrouk Z (2019) The L-curve criterion as a model selection tool in PLS regression. J Prob Stat 19:7. https://doi.org/10.1155/2019/3129769

    Article  Google Scholar 

  • Kumar S, Pal SK (2020) Underground coal fire mapping using analysis of self-potential (SP) data collected from Akashkinaree Colliery, Jharia Coalfield. India J Geol Soc India 95(4):350–358

    Article  Google Scholar 

  • Li X, Yin M (2012) Application of differential evolution algorithm on self-potential data. PloS one. https://doi.org/10.1371/journal.pone.0051199

    Article  Google Scholar 

  • Li S, Liu B, Nie L, Liu Z, Tian M, Wang S, Su M, Guo Q (2015) Detecting and monitoring of water inrush in tunnels and coal mines using direct current resistivity method: a review. J Rock Mech Geotech Eng 7:469–478

    Article  Google Scholar 

  • Liu B, Li SC, Nie LC, Wang J, Song J, Liu ZY (2012) Advanced detection of water-bearing geological structures in tunnels using 3D DC resistivity inversion tomography method. Chin J Geotech Eng 34:1866–1876

    Google Scholar 

  • Loke MH (2000) Electrical imaging surveys for environmental and engineering studies: A practical guide to 2-D and 3-D surveys. Available at: http://www.terra plus. com

  • Loke MH (2001) Constrained time-lapse resistivity imaging inversion. Proc, 14th EEGS Symp on the Application of Geophysics to Engineering and Environmental Problems, European Assoc of Geoscientists & Engineers

  • Loke MH, Barker RD (1995) Least-squares deconvolution of apparent resistivity pseudosections. Geophysics 60(6):1682–1690

    Article  Google Scholar 

  • Loke MH, Lane JW Jr (2004) Inversion of data from electrical resistivity imaging surveys in water-covered areas. Explor Geophys 35:266–271

    Article  Google Scholar 

  • Lu T, Liu SD, Wang B, Wu RX, Hu XW (2017) A review of geophysical exploration technology for mine water disaster in China: applications and trends. Mine Water Environ 36:331–340

    Article  Google Scholar 

  • Luo Y, Peng SS, Zhang YQ (2001) Simulation of water seepage through and stability of coal mine barrier pillars. T Soc Min Metallurg Explor 310:142–147

    Google Scholar 

  • Martínez-Pagán P, Jardani A, Revil A, Haas A (2010) Self-potential monitoring of a salt plume. Geophysics 75:17–25

    Article  Google Scholar 

  • Moore JR, Boleve A, Sanders JW, Glaser SD (2011) Self-potential investigation of moraine dam seepage. J Appl Geophys 74:277–286

    Article  Google Scholar 

  • Murty BS, Haricharan P (1985) Nomogram for the complete interpretation of spontaneous potential profiles over sheet-like and cylindrical two-dimensional sources. Geophysics 50(7):1127–1135

    Article  Google Scholar 

  • Nyquist JE, Corry CE (2002) Self-potential: The ugly duckling of environmental geophysics. Lead Edge 21:446–451

    Article  Google Scholar 

  • Otto R, Button E, Bretterebner H, Schwab P (2002) The application of TRT-true reflection tomography-at the Unterwald Tunnel. Felsbau 20:51–56

    Google Scholar 

  • Panthulu TV, Krishnaiah C, Shirke JM (2001) Detection of seepage paths in earth dams using self-potential and electrical resistivity methods. Eng Geol 59:281–295

    Article  Google Scholar 

  • Park J, Lee KH, Park J, Choi H, Lee IM (2016) Predicting anomalous zone ahead of tunnel face utilizing electrical resistivity: I. Algorithm and measuring system development. Tunn Undergr Space Technol 60:141–150

    Article  Google Scholar 

  • Petronio L, Poletto F, Schleifer A (2007) Interface prediction ahead of the excavation front by the tunnel-seismic while drilling (TSWD) method. Geophysics 72:39–44

    Article  Google Scholar 

  • Rein A, Hoffmann R, Dietrich P (2004) Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements. J Hydrol 285(1–4):215–232

    Article  Google Scholar 

  • Revil A, Jardani A (2013) The self-potential method: Theory and Applications in Environmental Geosciences. Cambridge University Press

    Book  Google Scholar 

  • Revil A, Titov K, Doussan C, Lapenna V (2006) Applications of the self-potential method to hydrological problems. Appl Hydrogeophys 71:255–292. https://doi.org/10.1007/978-1-4020-4912-5_9

    Article  Google Scholar 

  • Reynolds JM (2011) An Introduction to Applied and Environmental Geophysics. John Wiley & Sons

    Google Scholar 

  • Santos FA (2010) Inversion of self-potential of idealized bodies anomalies using particle swarm optimization. Comp Geosci 36:1185–1190

    Article  Google Scholar 

  • Sentenac P, Benes V, Budinsky V, Keenan H, Baron R (2017) Post flooding damage assessment of earth dams and historical reservoirs using non-invasive geophysical techniques. J Appl Geophys 146:138–148

    Article  Google Scholar 

  • Shabanimashcool M, Li CC (2013) A numerical study of stress changes in barrier pillars and a border area in a longwall coal mine. Int J Coal Geol 106:39–47

    Article  Google Scholar 

  • Shi Y, Eberhart RC (1998) Parameter selection in particle swarm optimization. Proc, International Conf on Evolutionary Programming. Springer, Berlin, Heidelberg, pp 591–600

  • Shieh HL, Kuo CC, Chiang CM (2011) Modified particle swarm optimization algorithm with simulated annealing behavior and its numerical verification. Appl Math Comput 218:4365–4383

    Google Scholar 

  • Singh KKK, Bharti AK, Pal SK, Prakash A, Kumar R, Singh PK (2019) Delineation of fracture zone for groundwater using combined inversion technique. Environ Earth Sci 78:110

    Article  Google Scholar 

  • Srivardhan V, Pal SK, Vaish J, Kumar S, Bharti AK, Priyam P (2016) Particle swarm optimization inversion of self- potential data for depth estimation of coal fires over East Basuria colliery, Jharia coalfield. India Environ Earth Sci 75:688

    Article  Google Scholar 

  • Srivastava S, Pal SK, Kumar R (2020) A time-lapse study using self-potential and electrical resistivity tomography methods for mapping of old mine working across railway-tracks in a part of Raniganj coalfield, India. Environ Earth Sci 79:1–19

    Article  Google Scholar 

  • Telford WM, Telford WM, Geldart LP, Sheriff RE, Sheriff RE (1990) Applied Geophysics. Cambridge University Press

    Book  Google Scholar 

  • Thararoop P, Karpyn ZT, Ertekin T (2012) Development of a multi-mechanistic, dual-porosity, dual-permeability, numerical flow model for coalbed methane reservoirs. J Nat Gas Sci Eng 8:121–131

    Article  Google Scholar 

  • Titov K, Loukhmanov V, Potapov A (2000) Monitoring of water seepage from a reservoir using resistivity and self-polarization methods: case history of the Petergoph fountain water supply system. First Break 18:431–435

    Article  Google Scholar 

  • Tripathy DP, Ala CK (2018) Identification of safety hazards in Indian underground coal mines. J Sustain Mining 17:175–183

    Article  Google Scholar 

  • Verma RK, Bhuin NC (1979) Use of electrical resistivity methods for study of coal seams in parts of the Jharia Coalfields, India. Geoexploration 17:163–176

    Article  Google Scholar 

  • Verma RK, Bandopadhyay TK, Bhuin NC (1982) Use of electrical resistivity methods for the study of coal seams in parts of the Raniganj Coalfields (India). Geophys Prospect 30:115–126

    Article  Google Scholar 

  • Vutukuri VS, Singh RN (1995) Mine inundation-case histories. Mine Water Environ 14:107–130

    Article  Google Scholar 

  • Wilkinson PB, Chambers JE, Meldrum PI, Ogilvy RD, Mellor CJ, Caunt S (2005) A comparison of self-potential tomography with electrical resistivity tomography for the detection of abandoned mineshafts. J Environ Eng Geophys 10:381–389

    Article  Google Scholar 

  • Wu Y, Li T, Sun L, Chen J (2013) Parallelization of a hydrological model using the message passing interface. Environ Model Softw 43:124–132

    Article  Google Scholar 

  • Xue GQ, Yan YJ, Li X, Di QY (2007) Transient electromagnetic S-inversion in tunnel prediction. Geophys Res Lett. https://doi.org/10.1029/2007GL031080

    Article  Google Scholar 

  • Yüngül S (1950) Interpretation of spontaneous polarization anomalies caused by spheroidal ore bodies. Geophysics 15:237–246

    Article  Google Scholar 

  • Zhang H, Zhang B, Xu N, Shi L, Wang H, Lin W, Ye Y (2019) Water inrush characteristics and hazard effects during the transition from open-pit to underground mining: a case study. Roy Soc Open Sci. https://doi.org/10.1098/rsos.181402

    Article  Google Scholar 

Download references

Acknowledgements

We thank the editorial team and all of the distinguished reviewers for their quick, comprehensive review and valuable suggestions for improving the manuscript. We thank the Ministry of Coal, Govt. of India, for funding project MT-173 on “Study of hazards due to mining induced sub-surface cavities and waterlogged areas in inaccessible old workings in underground coal mines using geophysical technique”, the Dept. of Science and Technology (DST), Govt. of India, for funding project SB/S4/ES-640/2012 on geotechnical characterization of the Jharia coal field area using geophysical techniques, DST FIST project SR/FST/ES-1/2017/12, and ISRO, Dept. of Space, Govt. of India for funding project ISRO/RES/630/2016-17. We also thank Prof. R. M. Bhattacharjee, HOD, Dept. of Mining Engineering, IIT(ISM) for valuable guidance in this work and the Director of IIT(ISM) and HOD, Dept. of Applied Geophysics, IIT(ISM), Dhanbad for providing resources for this study. We extend our deep gratitude to Mr. Praveen Kumar and Mr. Neelam Raju Ekka Area-III, of Jogidhi Colliery, BCCL, for their kind support during the survey.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjit Kumar Pal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, R., Pal, S.K. & Gupta, P.K. Water Seepage Mapping in an Underground Coal-Mine Barrier Using Self-potential and Electrical Resistivity Tomography. Mine Water Environ 40, 622–638 (2021). https://doi.org/10.1007/s10230-021-00788-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-021-00788-w

Keywords

Navigation