Skip to main content
Log in

Environmental Stability of Schwertmannite: A Review

Überprüfung der Umweltstabilität von Schwertmannit-A

Estabilidad ambiental de la schwertmannita - una revisión

施氏矿环境稳定性-综述

  • Review
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Schwertmannite is sensitive to changes in geochemical, thermal, and microbial conditions. Changes in aqueous pH beyond its stability, i.e. pH 2.5–4.5, triggers its transformation to jarosite or goethite in highly acidic environments (pH ≤ 2.5), depending on the availability of jarosite-directing cations (Na+, NH4+, K+, etc.), while goethite is the common stable end product at pH > 7.5. Schwertmannite with degraded morphology can stably exist for years in oxic intermediate pH environments (pH 5.5–6.5), but the presence of trace amounts of Fe(II)aq yields goethite/lepidocrocite within a few hours, especially at pH ≥ 6.5. Hematite is the sole end product at ≥ 600 °C dry heating, with goethite and ferrihydrite as intermediate phases. Siderite, maghemite, and mackinawite form in anoxic microbial conditions due to dissimilatory reduction of Fe(III) and SO42− to Fe(II) and HS, while orpiment forms from As(V)-rich schwertmannites. Sorbed contaminants enhance schwertmannite stability by restricting Fe(II)–Fe(III) electron transfer and microbial degradation by occupying surface sites. Although Fe(III) and sorbed ion mobilization typically has negligible effects on schwertmannite transformation, complete schwertmannite-SO4 release is likely in extreme conditions, and in microbial Fe(II)aq-rich media. Dissolution–reprecipitation and solid state transformation mechanisms broadly govern schwertmannite transformation.

Zusammenfassung

Schwertmannit reagiert empfindlich auf Veränderungen der geochemischen, thermischen und mikrobiellen Bedingungen. Es ist im pH-Bereich zwischen 2,5 und 4,5 stabil. Bei Änderung des pH-Wertes der wässrigen Lösung über den Stabilitätsbereich hinaus kommt es zur Umwandlung in Jarosit oder Goethit. Im stark sauren Bereich (pH ≤ 2,5) erfolgt abhängig von der Verfügbarkeit einwertiger Kationen (Na+, NH4+, K+ usw.) eine Umwandlung in Jarosit. Bei pH-Werten über 7,5 bildet sich Goethit als stabiles Endprodukt. Schwertmannit mit gestörter Gitterstruktur kann im oxischen und intermediären pH-Milieu (pH = 5,5 bis 6,5) jahrelang stabil existieren. Wenn Fe(II)aq in Spuren vorhanden ist, entsteht allerdings Goethit/Lepidokrokit innerhalb von Stunden. Ein pH-Wert ≥ 6,5 fördert diesen Prozess. Bei trockener Erwärmung von Schwertmannit auf über + 600 °C wird es über die Zwischenphasen Goethit und Ferrihydrit in Hämatit umgewandelt. Unter anoxischen Bedingungen bilden sich aufgrund der dissimilatorischen Reduktion von Fe(III) und SO42- zu Fe(II) bzw. HS- Siderit, Maghämit und Mackinawit. Aus As(V)-reichen Schwertmanniten bildet sich Auripigment. Die Stabilität von Schwertmannit wird durch Verunreinigungen verbessert. Diese beschränken den Fe(II)-Fe(III)-Elektronentransfer und den mikrobiellen Abbau durch Besetzung von Sorptionsplätzen an der Oberfläche. Meist sind die Auswirkungen von Fe(III) sowie der Mobilisierung von sorbierten Ionen bei der Schwertmannitumwandlung vernachlässigbar, aber eine vollständige Freisetzung von Schwertmannit-SO4 ist unter extremen Bedingungen sowie in mikrobiellen Fe(II)aq-reichen Medien wahrscheinlich. Die Umwandlung von Schwertmannit erfolgt durch die Mechanismen der Auflösung und Fällung sowie der Festkörperumwandlung.

Resumen

La schwertmannita es sensible a los cambios en las condiciones geoquímicas, térmicas y microbianas. Valores de pH más allá de su estabilidad (2,5-4,5) desencadenan su transformación en jarosita o goethita en ambientes altamente ácidos (pH≤2,5), dependiendo de la disponibilidad de cationes que dirigen la jarosita (Na+, NH4+, K+, etc.), mientras que la goethita es el producto final estable común a pH>7,5. La schwertmannita con morfología degradada puede existir de manera estable durante años en ambientes de pH intermedio óxico (pH 5,5-6,5) pero la presencia de trazas de Fe(II) acuoso produce goethita/lepidocrocita en pocas horas, especialmente a valores de pH≥6,5. La hematita es el único producto final a ≥600 °C de calentamiento seco, con goethita y ferrihidrita como fases intermedias. La siderita, la maghemita y la mackinawita se forman en condiciones microbianas anóxicas debido a la reducción disimilatoria de Fe(III) y SO42- a Fe(II) y HS-, mientras que el orpimento se forma a partir de schwertmannita rica en As(V). Los contaminantes absorbidos mejoran la estabilidad de la schwertmannita restringiendo la transferencia de electrones Fe(II)-Fe(III) y la degradación microbiana al ocupar los sitios de la superficie. Aunque la movilización del Fe(III) y de iones sorbidos tiene típicamente efectos insignificantes en la transformación de la schwertmannita, la liberación completa de schwertmannita-SO4 puede ocurrir bajo condiciones extremas y en medios ricos en Fe(II) acuoso con presencia microbiana. Los mecanismos de disolución-reprecipitación y de transformación de estado sólido gobiernan ampliamente la transformación de la schwertmannita.

抽象

施氏矿对地球化学、热和微生物环境变化比较敏感。当水体pH超过它的稳定性范围时,例如pH值2.5-4.5,它将转变黄钾铁矾或在强酸环境下(pH≤2.5)转变为针铁矿,转变依赖于Na+、NH4+、K+等黄钾铁矾指向阳离子,然而针铁矿是pH>7.5时常见的最终稳定产物。形态退化施氏矿可在pH中等的氧化环境中(pH 5.5-6.5)稳定存在数年,但微量Fe(II)aq的存在,尤其是pH≥6.5时,可使之数小时内变成针铁矿/纤铁矿。赤铁矿是≥600°C干热条件下唯一产物,针铁矿和水铁矿为其中间过渡相。在缺氧的微生物作用下,铁(III)和SO 2-4 异化还原为铁(II)和HS-,会生成菱铁矿、磁赤铁矿和四方硫铁矿,而富As(V)-施氏矿则变成雌黄。通过占据反应表面以限制Fe(II)-Fe(III)电子转移和微生物降解的方式,吸附污染物提高了施氏矿的稳定性。虽然铁(III)和吸附离子活性对施底矿转化影响甚微,但极端条件和微生物富铁(II)aqi介质中的完全的施氏矿SO4释放是可能的。总体上,溶解-再沉淀和固体状态转化的机理控制着施氏矿转变。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Acero P, Torrentó C, Ayora C (2005) Effect of schwertmannite ageing on acid rock drainage geochemistry. In: Proceedings of the 9th Int Mine Water Cong, pp 67–73

  • Acero P, Ayora C, Torrentó C, Nieto J (2006) The behavior of trace elements during schwertmannite precipitation and subsequent transformation into goethite and jarosite. Geochim Cosmochim Acta 70:4130–4139

    Article  Google Scholar 

  • Alarcón R, Gaviria J, Dold B (2014) Liberation of adsorbed and co-precipitated arsenic from jarosite, schwertmannite, ferrihydrite, and goethite in seawater. Mineral 4:603–620

    Article  Google Scholar 

  • Antelo J, Fiol S, Gondar D, Pérez C, López R, Arce F (2013) Cu(II) incorporation to schwertmannite: effect on stability and reactivity under AMD conditions. Geochim Cosmochim Acta 119:149–163

    Article  Google Scholar 

  • Baleeiro A, Fiol S, Otero-Fariña A, Antelo J (2018) Surface chemistry of iron oxides formed by neutralization of acidic mine waters: Removal of trace metals. Appl Geochem 89:129–137

    Article  Google Scholar 

  • Bao Y, Guo C, Lu G, Yi X, Wang H, Dang Z (2018) Role of microbial activity in Fe(III) hydroxysulfate mineral transformations in an acid mine drainage-impacted site from the Dabaoshan Mine. Sci Total Environ 616–617:647–657

    Article  Google Scholar 

  • Barham BJ (1997) Schwertmannite: a unique mineral, contains a replaceable ligand, transforms to jarosites, hematites, and/or basic iron sulfate. J Mater Res 12:2751–2757

    Article  Google Scholar 

  • Bertel D, Peck J, Quick TJ, Senko JM (2012) Iron transformations induced by an acid-tolerant Desulfosporosinus species. Appl Environ Microb 78:81–88

    Article  Google Scholar 

  • Bibring JP, Arvidson RE, Gendrin A, Gondet B, Langevin Y, Le Mouelic S, Mangold N, Morris RV, Mustard JF, Poulet F, Quantin C, Sotin C (2007) Coupled ferric oxides and sulfates on the Martian surface. Science 317:1206–1210

    Article  Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulfates from acid sulfate waters. In: Alpers CN, Jambor JL, Nordstrom DK (eds) Reviews in mineralogy and geochemistry, sulfate minerals: crystallography, geochemistry, and environmental significance, vol 40. Mineralogical Society of America, Washington DC, pp 351–403

    Google Scholar 

  • Bigham JM, Schwertmann U, Carlson L, Murad E (1990) A poorly crystallized oxyhydroxysulfate of iron formed by the bacterial oxidation of Fe(II) in acid mine waters. Geochim Cosmochim Acta 54:2743–2758

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Carlson L (1992) Mineralogy of precipitates formed by the biogeochemical oxidation of Fe(II) in mine drainage. In: Skinner HGW. Fitzpatrick RW (Eds), Biomineralization processes of iron and manganese—modern and ancient environments. Catena Supplement Catena-Verlag, Cremlingen-Destedt, pp 219–232

  • Bigham JM, Carlson L, Murad E (1994) Schwertmannite, a new iron oxyhydroxysulphate from Pyhäsalmi, Finland, and other localities. Mineral Mag 58:641–648

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Pfab G (1996a) Influence of pH on mineral speciation in a bioreactor stimulating acid mine drainage. Appl Geochem 11:845–849

    Article  Google Scholar 

  • Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996b) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121

    Article  Google Scholar 

  • Blake D, Lu K, Horwitz P, Boyce MC (2012) Fire suppression and burnt sediments: effects on the water chemistry of fire-affected wetlands. Int J Wildland Fire 21:557–561

    Article  Google Scholar 

  • Blodau C (2004) Evidence for a hydrologically controlled iron cycle in acidic and iron rich sediments. Aquat Sci 66:47–59

    Article  Google Scholar 

  • Blodau C (2006) A review of acidity generation and consumption in acidic coal mine lakes and their watersheds. Sci Total Environ 369:307–332

    Article  Google Scholar 

  • Blodau C, Gatzek C (2006) Chemical controls on iron reduction in schwertmannite-rich sediments. Chem Geol 235:366–376

    Article  Google Scholar 

  • Blodau C, Peiffer S (2003) Thermodynamics and organic matter: constraints on neutralization processes in sediments of highly acidic waters. Appl Geochem 18:25–36

    Article  Google Scholar 

  • Bradstock RA, Bedward M, Cohn JS (2006) The modelled effects of differing fire management strategies on the conifer Calltris verrucosa within semi-arid mallee vegetation in Australia. J Appl Ecol 43:281–292

    Article  Google Scholar 

  • Brady KS, Bigham JM, Jaynes WF, Logan TJ (1986) Influence of sulfate on Fe-oxide formation: comparisons with a stream receiving acid mine drainage. Clays Clay Miner 34:266–274

    Article  Google Scholar 

  • Burton ED, Johnston SG (2012) Impact of silica on the reductive transformation of schwertmannite and the mobilization of arsenic. Geochim Cosmochim Acta 96:134–153

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA (2006) Sedimentary iron geochemistry in acidic waterways associated with coastal lowland acid sulfate soils. Geochim Cosmochim Acta 70:5445–5468

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2007) Reductive transformation of iron and sulfur in schwertmannite-rich accumulations associated with acidified coastal lowlands. Geochim Cosmochim Acta 71:4456–4473

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Mitchell DRG (2008) Schwertmannite transformation to goethite via the Fe(II) pathway: reaction rates and implications for iron-sulfide formation. Geochim Cosmochim Acta 72:4551–4564

    Article  Google Scholar 

  • Burton ED, Bush RT, Sullivan LA, Johnston SG, Hocking RK (2008) Mobility of arsenic and selected metals during re-flooding of iron- and organic-rich acid-sulfate soil. Chem Geol 253:64–73

    Article  Google Scholar 

  • Burton ED, Bush RT, Johnston SG, Watling K, Hocking RK, Sullivan LA, Heber GK (2009) Sorption of arsenic(V) and arsenic(III) to schwertmannite. Environ Sci Technol 43:9202–9207

    Article  Google Scholar 

  • Burton ED, Johnston SG, Watling K, Bush RT, Keene AF, Sullivan LA (2010) Arsenic effects and behavior in association with the Fe(II)-catalyzed transformation of schwertmannite. Environ Sci Technol 44:2016–2021

    Article  Google Scholar 

  • Burton ED, Johnston SG, Bush RT (2011) Microbial sulfidogenesis in ferrihydrite-rich environments: effects on iron mineralogy and arsenic mobility. Geochim Cosmochim Acta 75:3072–3087

    Article  Google Scholar 

  • Burton ED, Johnston SG, Kraal P, Bush RT, Claff S (2013) Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environ Sci Technol 47:2221–2229

    Article  Google Scholar 

  • Caraballo MA, Rimstidt JD, Macías F, Nieto JM, Hochella MF Jr (2013) Metastability, nanocrystallinity and pseudo-solid solution effects on the understanding of schwertmannite solubility. Chem Geol 360–361:22–31

    Article  Google Scholar 

  • Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F (2002) Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues. Environ Sci Technol 36:1712–1719

    Article  Google Scholar 

  • Childs CW, Inoue K, Mizota C (1998) Natural and anthropogenic schwertmannites from Towada-Hachimantai National Park, Honshu, Japan. Chem Geol 144:81–86

    Article  Google Scholar 

  • Collins RN, Jones AM, Waite TD (2010) Schwertmannite stability in acidified coastal environments. Geochim Cosmochim Acta 74:482–496

    Article  Google Scholar 

  • Cornell RM, Schwertmann U (2003) The iron oxides: structure, properties, reactions. Occurrences and uses. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Coupland K, Johnson DB (2008) Evidence that the potential for dissimilatory ferric iron reduction is widespread among acidophilic heterotrophic bacteria. FEMS Microbial Lett 279:30–35

    Article  Google Scholar 

  • Courtin-Nomade A, Grosbois C, Bril H, Roussel C (2005) Spatial variability of arsenic in some iron-rich deposits generated by acid mine drainage. Appl Geochem 20:383–396

    Article  Google Scholar 

  • Cruz-Hermández P, Peréz-López R, Nieto JM (2017) Role of arsenic during the aging of acid mine drainage precipitates. Proc Earth Planet Sci 17:233–236

    Article  Google Scholar 

  • Cutting RS, Coker VS, Telling ND, Kimber RL, Laan G, Pattrick RAD, Vaughan DJ, Arenholz E, Lloyd JR (2012) Microbial reduction of arsenic-doped schwertmannite by Geobacter sulfurreducens. Environ Sci Technol 46:12591–12599

    Article  Google Scholar 

  • Davidson LE, Shaw S, Benning LG (2008) The kinetics and mechanism of schwertmannite transformation to goethite and hematite under alkaline conditions. Ame Min 93:1326–1337

    Article  Google Scholar 

  • Dempsey BA, Roscoe HC, Ames R, Hedin R, Jeon BH (2001) Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochem Explor Environ Anal 1:81–88

    Article  Google Scholar 

  • Doelsch E, Rose J, Masion A, Bottero JY, Nohon D, Bertsch PM (2000) Speciation and crystal chemistry of iron(III) chloride hydrolysed in the presence of SiO4 ligands. An Fe K-edge EXAFS study Langmuir 16:4726–4731

    Google Scholar 

  • Fortin D, Davis B, Beveridge TJ (1996) Role of Thiobacillus and sulphate reducing bacteria in iron biocycling in oxic and acidic mine tailings. FEMS Microbiol Ecol 21:11–24

    Article  Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    Article  Google Scholar 

  • Fukushi K, Sato T, Yanase N, Minato J, Yamada H (2004) Arsenate sorption on schwertmannite. Ame Miner 89:1728–1734

    Article  Google Scholar 

  • Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128

    Article  Google Scholar 

  • Hansel CM, Benner SG, Fendorf S (2005) Competing Fe(II)-induced mineralization pathways of ferrihydrite. Environ Sci Technol 39:7147–7153

    Article  Google Scholar 

  • Henderson SP, Sullivan LA (2010) Low temperature transformation of schwertmannite to hematite with associated CO2, SO and SO2 evolution. In: Proceedings of the 19th World Cong Soil Sci Soil Sol Changing World, pp 72–75

  • Henderson SP, Sullivan LA, Bush RT, Burton ED (2007) Schwertmannite transformation to hematite by heating: implications for pedogenesis, water quality and CO2/SO2 export in acid sulfate soil landscapes. Geochim Cosmochim Acta 71:A394

    Google Scholar 

  • Henderson SP, Sullivan LA, Bush RT, Burton ED (2008) Thermal transformation of schwertmannite to hematite: anomalous stored acidity. In: Lin C, Huang S, Li Y (Eds), Proc. Joint Conf. 6th Int. Acid Sulfate Soil Conf. Acid Rock Drain. Symp., Guangzhou, China, p. 264

  • Hockridge JG, Jones F, Loan M, Richmond WR (2009) An electron microscopy study of the crystal growth of schwertmannite needles through oriented aggregation of goethite nanocrystals. J Cryst Growth 311:3876–3882

    Article  Google Scholar 

  • Houben GJ (2003) Iron incrustations in wells. Part 1: genesis, mineralogy and geochemistry. Appl Geochem 18:927–939

    Article  Google Scholar 

  • Houngaloune S, Hiroyoshi N, Ito M (2015a) Stability of As(V)-sorbed schwertmannite under porphyry copper mine conditions. Min Eng 74:51–59

    Article  Google Scholar 

  • Houngaloune S, Hiroyoshi N, Ito M (2015b) Effect of Fe(II) and Cu(II) on the transformation of schwertmannite to goethite under acidic condition. Int J Chem Eng Appl 6:32–37

    Google Scholar 

  • Huang S, Zhou X (2012) Fe2+ oxidation rate drastically affect the formation and phase of secondary iron hydroxysulfate mineral occurred in acid mine drainage. Mater Sci Eng C 32:916–921

    Article  Google Scholar 

  • Hustwit CC, Ackman TE, Erickson PE (1992) The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environ Res 64:817–823

    Article  Google Scholar 

  • Johnston SG, Slavich PG, Hirst P (2005) Changes in surface water quality after inundation of acid sulfate soils of different vegetation cover. Aust J Soil Res 43:1–12

    Article  Google Scholar 

  • Johnston SG, Keene AF, Bush RT, Burton ED, Sullivan LA, Smith D, Martens MA, McElnea AE, Wilbraham ST, van Heel S (2009) Contemporary pedogenesis of severely degraded tropical acid sulfate soils after introduction of regular tidal inundation. Geoderma 149:335–346

    Article  Google Scholar 

  • Johnston SG, Keene AF, Burton ED, Bush RT, Sullivan LA (2011) Iron and arsenic cycling in intertidal surface sediments during wetland remediation. Environ Sci Technol 45:2179–2185

    Article  Google Scholar 

  • Johnston SG, Burton ED, Keene AF, Planer-Friedrich B, Voegelin A, Blackford MG, Lumpkin GR (2012) Arsenic mobilization and iron transformations during sulfidization of As(V)-bearing jarosite. Chem Geol 334:9–24

    Article  Google Scholar 

  • Johnston SG, Burton ED, Moon EM (2016) Arsenic mobilization is enhanced by thermal transformation of schwertmannite. Environ Sci Technol 50:8010–8019

    Article  Google Scholar 

  • Johnston SG, Bennett WW, Burton ED, Hockmann K, Dawson N, Karimian N (2018) Rapid arsenic(V)-reduction by fire in schwertmannite-rich soil enhances arsenic mobilization. Geochim Cosmochim Acta 227:1–18

    Article  Google Scholar 

  • Jones EJP, Nadeau T, Voytek MA, Landa ER (2006) Role of microbial iron reduction in the dissolution of iron hydroxysulfate minerals. J Geophy Res 111:1–8

    Google Scholar 

  • Jones AM, Collins RN, Rose J, Waite TD (2009) The effect of silica and natural organic matter on the Fe(II)-catalyzed transformation and reactivity of Fe(III) minerals. Geochim Cosmochim Acta 73:4409–4422

    Article  Google Scholar 

  • Jönsson J, Persson P, Sjoberg S, Lovgren L (2005) Schwertmannite precipitated from acid mine drainage: phase transformation, sulphate release and surface properties. Appl Geochem 20:179–191

    Article  Google Scholar 

  • Jönsson J, Jönsson J, Lövgren L (2006) Precipitation of secondary Fe(III) minerals from acid mine drainage. Appl Geochem 21:437–445

    Article  Google Scholar 

  • Khamphila K, Kodama R, Sato T, Otake T (2017) Adsorption and post adsorption behavior of schwertmannite with various oxyanions. J Min Mater Charact Eng 5:90–106

    Google Scholar 

  • Kim JJ, Kim SJ, Tazaki K (2002) Mineralogical characterization of microbial ferrihydrite and schwertmannite, and non-biogenic Al-sulfate precipitates from acid mine drainage in the Donghae mine area, Korea. Environ Geol 42:19–31

    Article  Google Scholar 

  • Knorr K, Blodau C (2007) Controls on schwertmannite transformation rates and products. Appl Geochem 22:2006–2015

    Article  Google Scholar 

  • Kumpulainen S, Carlson L, Raisanen ML (2007) Seasonal variations of ochreous precipitates in mine effluents in Finland. Appl Geochem 22:760–777

    Article  Google Scholar 

  • Kumpulainen S, Räisänen ML, Von der Kammer F, Hofmann T (2008) Ageing of synthetic and natural schwertmannites at pH 2–8. Clay Min 43:437–448

    Article  Google Scholar 

  • Küsel K, Dorsch T (2000) Effect of supplemental electron donors on the microbial reduction of Fe(III), sulfate, and CO2 in coal mining-impacted freshwater lake sediments. Microb Ecol 40:238–249

    Article  Google Scholar 

  • Küsel K, Dorsch T, Acker G, Stackebrandt E (1999) Microbial reduction of Fe(III) in acidic sediments: Isolation of Acidiphilium cryptum JF-5 capable of coupling the reduction of Fe(III) to the oxidation of glucose. Appl Environ Microbiol 65:3633–3640

    Article  Google Scholar 

  • Langmuir D (1997) Acid mine waters. In: Mc Connin R (ed) Aqueous environmental geochemistry. Prentice-Hall, New Jersey, pp 457–478

    Google Scholar 

  • Liao Y, Liang J, Zhou L (2011) Adsorptive removal of As(III) by biogenic schwertmannite from simulated As-contaminated groundwater. Chemosphere 83:295–301

    Article  Google Scholar 

  • Li J, Xie Y, Lu G, Ye H, Yi X, Reinfelder JR, Lin Z, Dang Z (2018) Effect of Cu(II) on the stability of oxyanion-substituted schwertmannite. Environ Sci Poll Res 25:15492–15506

    Article  Google Scholar 

  • Loan M, Cowley JM, Hart R, Parkinson GM (2004) Evidence on the structure of synthetic schwertmannite. Ame Miner 89:1735–1742

    Article  Google Scholar 

  • Luxton TP, Tadanier CJ, Eick MJ (2006) Mobilization of arsenite by competitive interaction with silicic acid. Soil Sci Soc Ame J 70:204–214

    Article  Google Scholar 

  • Luxton TP, Eick MJ, Rimstidt DJ (2008) The role of silicate in the adsorption/desorption of arsenite on goethite. Chem Geol 252:125–135

    Article  Google Scholar 

  • Mazzetti L, Thistlethwaite PJ (2002) Raman spectra and thermal transformations of ferrihydrite and schwertmannite. J Raman Spectrosc 33:104–111

    Article  Google Scholar 

  • Morel FMM, Hering JG (1993) Principles and applications of aquatic chemistry. John Wiley and Sons, New York

    Google Scholar 

  • Murad E, Rojik P (2003) Iron-rich precipitates in a mine drainage environment: influence of pH on mineralogy. Ame Miner 88:1915–1918

    Article  Google Scholar 

  • Murad E, Rojik P (2004) Jarosite, schwertmannite, goethite, ferrihydrite and lepidocrocite: the legacy of coal and sulfide ore mining. In: Proceedings of the SuperSoil 2004: 3rd Australian New Zealand Soils Conference, pp 1–8

  • Murad E, Schwertmann U, Bigham JM, Carlson L (1994) Mineralogical characteristics of poorly crystallized precipitates formed by oxidation of Fe2+ in acid sulfate waters. In: Alpers CN, Blowes DW (Eds.), Environmental geochemistry of sulfide oxidation. ACS Symposium Series 550, American Chemical Society, Washington, DC, pp 190–200

  • Nordstrom DK (1982) Aqueous pyrite oxidation and the consequent formation of secondary iron minerals. In: Hossaer LR (ed) Acid Sulfate Weathering. Soil Sci. Soc. Amer, Madison, pp 37–63

    Google Scholar 

  • Nordstrom DK (1991) Chemical modeling of acid mine waters in the western United States. USGS Water Res. Invest. Rep. No. 91-4034, U.S. Geol. Surv., pp 534–538

  • Paikaray S, Peiffer S (2010) Dissolution kinetics of sulfate from schwertmannite under variable pH conditions. Mine Water Environ 29:263–269

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2012b) Abiotic schwertmannite transformation kinetics and the role of sorbed As(III). Appl Geochem 27:590–597

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2012a) Biotic and abiotic schwertmannites as scavengers for As(III): mechanisms and effects. Water Air Soil Poll 223:2933–2942

    Article  Google Scholar 

  • Paikaray S, Peiffer S (2015) Lepidocrocite formation kinetics from schwertmannite in Fe(II)-rich anoxic alkaline medium. Mine Water Environ 34:213–222

    Article  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2011) Removal of As(III) from acidic waters using schwertmannite: surface speciation and effect of synthesis pathway. Chem Geol 283:134–142

    Article  Google Scholar 

  • Paikaray S, Göttlicher J, Peiffer S (2012) As(III) retention kinetics, equilibrium and redox stability on biosynthesized schwertmannite and its fate and control on schwertmannite stability on acidic (pH 3.0) aqueous exposure. Chemosphere 86:557–564

    Article  Google Scholar 

  • Paikaray S, Essilfie-Dughan J, Göttlicher J, Pollock K, Peiffer S (2014) Redox stability of As(III) on schwertmannite surfaces. J Hazard Mater 265:208–216

    Article  Google Scholar 

  • Paikaray S, Schröder C, Peiffer S (2017) Schwertmannite stability in anoxic Fe(II)-rich aqueous solution. Geochim Cosmochim Acta 217:292–305

    Article  Google Scholar 

  • Pállová Z, Kupka D, Achimovičová M (2010) Metal mobilization from AMD sediments in connection with bacterial iron reduction. Miner Slov 42:343–347

    Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R, Larsen O (2005) Fast transformation of iron oxyhydroxides by the catalytic action of aqueous Fe(II). Geochim Cosmochim Acta 69:3967–3977

    Article  Google Scholar 

  • Pedersen HD, Postma D, Jakobsen R (2006) Release of arsenic associated with the reduction and transformation of iron oxides. Geochim Cosmochim Acta 70:4116–4129

    Article  Google Scholar 

  • Peine A, Küsel K, Tritschler A, Peiffer S (2000) Electron flow in an iron-rich acidic sedimant - evidence for an acidity-driven iron cycle. Limnol Oceanogr 45:1077–1087

    Article  Google Scholar 

  • Peretyazhko T, Zachara JM, Boily JF, Xia Y, Gassman PL, Arey BW, Burgos WD (2009) Mineralogical transformations controlling acid mine drainage chemistry. Chem Geol 262:169–178

    Article  Google Scholar 

  • Povrovski GS, Schott J, Farges F, Hazemann JL (2003) Iron(III)–silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy. Geochim Cosmochim Acta 67:3559–3573

    Article  Google Scholar 

  • Preda M, Cox ME (2004) Temporal variations of mineral character of acid-producing pyritic coastal sediments, Southeast Queensland, Australia. Sci Total Environ 326:257–269

    Article  Google Scholar 

  • Qiao X, Liu L, Shi J, Zhou L, Guo Y, Ge Y, Fan W, Liu F (2017) Heating changes bio-schwertmannite microstructure and arsenic(III) removal efficiency. Minerals 7:1–14

    Article  Google Scholar 

  • Raiswell R, Benning LG, Davidson L, Tranter M, Tulaczyk S (2009) Schwertmannite in wet, acid, and oxic microenvironments beneath polar and polythermal glaciers. Geology 37:431–434

    Article  Google Scholar 

  • Randall SR, Sherman DM, Ragnarsdottir KV, Collins CR (1999) The mechanism of cadmium surface complexation on iron oxyhydroxide minerals. Geochim Cosmochim Acta 63:2971–2987

    Article  Google Scholar 

  • Regenspurg S, Peiffer S (2005) Arsenate and chromate incorporation in schwertmannite. Appl Geochem 20:1226–1239

    Article  Google Scholar 

  • Regenspurg S, Gößner A, Peiffer S, Küsel K (2002) Potential remobilization of toxic anions during the reduction of arsenated and chromated schwertmannite by the dissimilatory Fe(III)-reducing bacterium Acidiphilium cryptum JF-5. Water Air Soil Poll 2:57–67

    Article  Google Scholar 

  • Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Acta 68:1185–1197

    Article  Google Scholar 

  • Reichelt L, Bertau M (2015) Transformation of nanostructured schwertmannite and 2-Line-ferrihydrite into hematite. Z Anorg Allg Chem 641:1696–1700

    Article  Google Scholar 

  • Roden EE, Zachara JM (1996) Microbial reduction of crystalline iron(III) oxides: influence of oxide surface area and potential for cell growth. Environ Sci Technol 30:1618–1628

    Article  Google Scholar 

  • Román-Ross G, López RP, Ayora C, Fernández A (2008) Arsenic fate during schwertmannite transformation: an EXAFS approach. Macla 9:213–214

    Google Scholar 

  • Sánchez- España J (2017) Crystallization in acidic media: from nanoparticles to macrocrystals. Seminarios SEM Vol. 13, Sociedad Española de Mineralogía, Madrid, ISSN 1698-5478, pp 15–34

  • Sánchez- España J, Yusta I, López GA (2012) Schwertmannite to jarosite conversion in the water column of an acidic mine pit lake. Miner Mag 76:2659–2682

    Article  Google Scholar 

  • Schoepfer VA, Burton ED, Johnston SG, Kraal P (2017) Phosphate-imposed constraints 1 on schwertmannite stability under reducing conditions. Environ Sci Technol 51:9739–9746

    Article  Google Scholar 

  • Schonberger S (2016) Stability of schwertmannite and cobalt substituted schwertmannite in mining environments. In: Proceedings of the 29th An Symp Learn Sci through Res., pp 1–5

  • Schroth AW, Parnell RA (2005) Trace metal retention through the schwertmannite to goethite transformation as observed in a field setting, Alta Mine, MT. Appl Geochem 20:907–917

    Article  Google Scholar 

  • Schwertmann U, Carlson L (2005) The pH-dependent transformation of schwertmannite to goethite at 25°C. Clay Miner 40:63–66

    Article  Google Scholar 

  • Schwertmann U, Bigham JM, Murad E (1995) The first occurrence of schwertmannite in a natural stream environment. Eur J Miner 7:547–552

    Article  Google Scholar 

  • Sidenko NV, Sherriff BL (2005) The attenuation of Ni, Zn and Cu, by secondary Fe phases of different crystallinity from surface and ground water of two sulfide mine tailings in Manitoba, Canada. Appl Geochem 20:1180–1194

    Article  Google Scholar 

  • Singer PC, Stumm W (1970) Acidic mine drainage: the rate determining step. Science 167:1121–1123

    Article  Google Scholar 

  • Sullivan LA, Bush RT (2004) Iron precipitate accumulations associated with waterways in drained coastal acid sulfate landscapes of eastern Australia. Mar Freshw Res 55:727–736

    Article  Google Scholar 

  • Swedlund PJ, Webster JG (1999) Adsorption and polymerization of silicic acid on ferrihydrite, and its effect on arsenic adsorption. Water Res 33:3413–3422

    Article  Google Scholar 

  • Swedlund PJ, Webster JG (2001) Cu and Zn ternary surface complex formation with SO4 on ferrihydrite and schwertmannite. Appl Geochem 16:503–511

    Article  Google Scholar 

  • Vithana CL, Sullivan LA, Burton ED, Bush RT (2015) Stability of schwertmannite and jarosite in an acidic landscape: Prolonged field incubation. Geoderma 239–240:47–57

    Article  Google Scholar 

  • Walter M, Arnold T, Reich T, Bernhard G (2003) Sorption of uranium(VI) onto ferric oxides in sulfate-rich acid waters. Environ Sci Technol 37:2898–2904

    Article  Google Scholar 

  • Wang H, Bigham JM, Tuovinen OH (2006) Formation of schwertmannite and its transformation to jarosite in the presence of acidophilic iron-oxidizing microorganisms. Mater Sci Eng C 26:588–592

    Article  Google Scholar 

  • Waychunas GA, Xu N, Fuller CC, Davis JA, Bigham JM (1995) XAS study of AsO43- and SeO42- substituted schwertmannites. Phys B 208–209:481–483

    Article  Google Scholar 

  • Waychunas GA, Jun YS, Eng PJ, Ghose SK, Trainor TP (2001) Anion sorption topology on hematite: comparison of arsenate and silicate. In: Barnett M, Kent D (eds) Developments in Earth And Environmental Sciences Vol 7—absorption of metals by Geomedia II. Elsevier, Amsterdam

    Google Scholar 

  • Webster JG, Swedlund PJ, Webster KS (1998) Trace metal adsorption onto acid mine drainage iron(III) oxy hydroxy sulfate. Environ Sci Technol 32:1361–1368

    Article  Google Scholar 

  • Williams AGB, Scherer MM (2004) Spectroscopic evidence for Fe(II)-Fe(III) electron transfer at the iron oxide-water interface. Environ Sci Technol 38:4782–4790

    Article  Google Scholar 

  • Winland RL, Traina SJ, Bigham JM (1991) Chemical composition of ochreous precipitates from Ohio coal mine drainage. J Environ Qual 20:452–460

    Article  Google Scholar 

  • Yu JY, Heo B, Cho JP, Chang HW (1999) Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochim Cosmochim Acta 63:3407–3416

    Article  Google Scholar 

  • Yu JY, Park M, Kim J (2002) Solubilities of synthetic schwertmannite and ferrihydrite. Geochem J 36:119–132

    Article  Google Scholar 

  • Zhang S, Jia S, Yu B, Liu Y, Wu S, Han Xu (2016) Sulfidization of As(V)-containing schwertmannite and its impact on arsenic mobilization. Chem Geol 420:270–279

    Article  Google Scholar 

  • Zhang J, Li W, Li Y, Zhou L, Lan Y (2019) Tartaric acid-induced photoreductive dissolution of schwertmannite loaded with As(III) and the release of adsorbed As(III). Environ Pollut 245:711–718

    Article  Google Scholar 

Download references

Acknowledgements

University Grants Commission, India and Panjab University, Chandigarh, India are acknowledged for providing financial, administrative and technical support during preparation of this article. Editors and publishers of respective journals are acknowledged to provide copyright permission to reproduce selected figures. Thanks to the reviewers for their valuable inputs to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanta Paikaray.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paikaray, S. Environmental Stability of Schwertmannite: A Review. Mine Water Environ 40, 570–586 (2021). https://doi.org/10.1007/s10230-020-00734-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00734-2

Keywords

Navigation