Abstract
The oil sands industry in Canada uses soil–vegetation–atmosphere-transfer (SVAT) water balance models, calibrated against short-term (<≈ 10 years) field monitoring data, to evaluate long-term (≈60 years) reclamation cover design performance. These evaluations use long-term historical climate data; however, the effects of climate change should also be incorporated in these analyses. Although statistical downscaling of global climate change projections is commonly used to obtain local, site-specific climate, high resolution dynamical downscaling can also be used. The value of this latter approach to obtain local site-specific projections for mine reclamation covers has not been evaluated previously. This study explored the differences in key water balance components of three reclamation covers and three natural sites in northern Alberta, Canada, under future, site-specific, statistical, and dynamical climate change projections. Historical meteorological records were used to establish baseline periods. Temperature datasets were used to calculate potential evapotranspiration (PET) using the Hargreaves–Samani method. Statistical downscaling uses the Long Ashton Research Station Weather Generator (LARS-WG) and global circulation model (GCM) projections of temperature and precipitation. Dynamical climate change projections were generated on a 4 km grid using the weather research and forecasting (WRF) model. These climate projections were applied to a physically-based water balance model (i.e. Hydrus-1D) to simulate actual evapotranspiration (AET) and net percolation (NP) for the baseline and future periods. The key findings were: (a) LARS-WG outperformed WRF in simulating baseline temperatures and precipitation; (b) both downscaling methods showed similar directional shifts in the future temperatures and precipitation; (c) this, in turn, created similar directional shifts in future growing season median AET and NP, although the increase in future NP for LARS-WG was higher than that for WRF. The relative increases in future NP were much higher than the relative increases in future AET, particularly for the reclamation covers.
Zusammenfassung
Die Ölsandindustrie in Kanada nutzt Wasserhaushaltsmodelle (SVAT) zur Vorhersage der langfristigen Leistungsfähigkeit (≈60 Jahre) von Rekultivierungsabdeckungen. Zur Kalibrierung werden kurzfristige (< ≈10 Jahre) Datenreihen aus der Überwachung im Feld genutzt. Eingang in die Modellierung finden auch langfristige historische Klimadatenreihen; wobei allerdings auch die Auswirkungen des Klimawandels in diesen Analysen berücksichtigt werden sollten. Bisher wird meist die statistische Skalierung zur Vorhersage von lokalen, standortspezifischen Klimaten in der Klimawandelmodellierung genutzt. Es kann zu diesem Zweck aber auch eine hochauflösende dynamische Skalierung verwendet werden. Diese Methode wurde bisher zur Gewinnung von standortspezifischen Daten bei der Rekultivierung nach der Schließung von Tagebauen noch nicht genutzt. Ihre Zuverlässigkeit kann deshalb nicht eingeschätzt wer-den. In dieser Studie wurden die Unterschiede zwischen den wichtigsten Wasserhaushaltskomponenten in drei Rekultivierungsgebieten und an drei natürlichen Standorten in Nord-Alberta, Kanada, im Rahmen von standortspezifischen statistischen und dynamischen Klimawandelprojek-tionen untersucht. Zur Festlegung von Referenzzeiträumen wurden histo-rische meteorologische Zeitreihen verwendet. Die potenzielle Evapo-transpiration (PET) wurde mithilfe der Hargreaves-Samani-Methode unter Nutzung von Temperaturdatensätzen berechnet. Zur statistischen Skalierung wurden sowohl der stochastische Wettergenerator der Long Ashton-Forschungsstation (LARS-WG) als auch das globale Zirkulationsmodell (GCM) zur Temperatur- und Niederschlagsprojektion verwendet. Dynamische Klimawandelprojektionen wurden im 4-km-Raster mit Hilfe des Wetterforschungs- und -vorhersagemodells (WRF) erstellt. Diese Klimaprojektionen wurden auf ein physikalisch basiertes Wasserhaushaltsmodell (Hydrus-1D) übertragen, um die tatsächliche Die Ölsandindustrie in Kanada nutzt Wasserhaushaltsmodelle (SVAT) zur Vorhersage der langfristigen Leistungsfähigkeit (≈60 Jahre) von Rekulti-vierungsabdeckungen. Zur Kalibrierung werden kurzfristige (< ≈10 Jahre) Datenreihen aus der Überwachung im Feld genutzt. Eingang in die Modellierung finden auch langfristige historische Klimadatenreihen; wobei allerdings auch die Auswirkungen des Klimawandels in diesen Analysen berücksichtigt werden sollten. Bisher wird meist die statistische Skalierung zur Vorhersage von lokalen, standortspezifischen Klimaten in der Klimawandelmodellierung genutzt. Es kann zu diesem Zweck aber auch eine hochauflösende dynamische Skalierung verwendet werden. Diese Methode wurde bisher zur Gewinnung von standortspezifischen Daten bei der Rekultivierung nach der Schließung von Tagebauen noch nicht genutzt. Ihre Zuverlässigkeit kann deshalb nicht eingeschätzt wer-den. In dieser Studie wurden die Unterschiede zwischen den wichtigsten Wasserhaushaltskomponenten in drei Rekultivierungsgebieten und an drei natürlichen Standorten in Nord-Alberta, Kanada, im Rahmen von standortspezifischen statistischen und dynamischen Klimawandelprojek-tionen untersucht. Zur Festlegung von Referenzzeiträumen wurden histo-rische meteorologische Zeitreihen verwendet. Die potenzielle Evapo-transpiration (PET) wurde mithilfe der Hargreaves-Samani-Methode unter Nutzung von Temperaturdatensätzen berechnet. Zur statistischen Skalierung wurden sowohl der stochastische Wettergenerator der Long Ashton-Forschungsstation (LARS-WG) als auch das globale Zirkulationsmodell (GCM) zur Temperatur- und Niederschlagsprojektion verwendet. Dynamische Klimawandelprojektionen wurden im 4-km-Raster mit Hilfe des Wetterforschungs- und -vorhersagemodells (WRF) erstellt. Diese Klimaprojektionen wurden auf ein physikalisch basiertes Wasserhaushaltsmodell (Hydrus-1D) übertragen, um die tatsächliche Evapotranspiration (AET) und die Nettoversickerung (NP) für den Referenzzeitraum und für zukünftige Perioden zu simulieren. Die wichtigsten Ergebnisse waren: (a) Das LARS-WG zeigte eine höhere Genauigkeit als das WRF bei der Si-mulation der Temperatur und des Niederschlags in der Referenzperiode. (b) Beide Skalierungsmethoden zeigten ähnliche Trends bei der Vorher-sage zukünftiger Temperaturen und Niederschläge. (c) Dies wiederum führte zu ähnlichen Trends im Median der Prognose der tatsächlichen Evapotranspiration AET und der Nettoversickerung NP für die Wachstumsperiode. Dabei war der Anstieg der zukünftigen NP im LARS-WG höher als im WRF. Die relativen Anstiege bei der zukünftigen NP waren in beiden Modellen viel höher als die relativen Anstiege bei den zukünftigen AET, insbesondere für die Rekultivierungsabdeckungen.
Resumen
La industria de las arenas petrolíferas en Canadá utiliza modelos de balance hídrico de suelo-vegetación-atmósfera-transferencia (SVAT), calibrados en función de los datos de monitoreo de campo a corto plazo (< ≈10 años), para evaluar el rendimiento del diseño de la cubierta de recuperación a largo plazo (≈60 años). Estas evaluaciones utilizan datos climáticos históricos a largo plazo; sin embargo, los efectos del cambio climático también deberían incorporarse a estos análisis. Aunque para obtener datos climáticos locales y específicos de cada lugar usualmente se utiliza la reducción de escala estadística de las proyecciones del cambio climático mundial, es posible también utilizar la reducción de escala dinámica de alta resolución. Sin embargo, aún no se ha usado esta última aproximación para obtener proyecciones locales específicas del lugar para las coberturas de recuperación de minas. En este estudio se exploraron las diferencias en los componentes esenciales del balance hídrico de tres cubiertas de recuperación y de tres sitios naturales en el norte de Alberta (Canadá), en el marco de las futuras proyecciones de cambio climático dinámico, estadístico y específico de cada sitio. Se utilizaron los registros meteorológicos históricos para establecer períodos de referencia. Los datos de temperatura se utilizaron para calcular la evapotranspiración potencial (PET) utilizando el método de Hargreaves-Samani. La reducción de escala estadística utiliza el Generador de Tiempo de la Estación de Investigación Long Ashton (LARS-WG) y las proyecciones de temperatura y precipitación del modelo de circulación global (GCM). Las proyecciones dinámicas de cambio climático se generaron en una cuadrícula de 4 km utilizando el modelo de investigación y pronóstico del tiempo (WRF). Estas proyecciones climáticas fueron aplicadas a un modelo de equilibrio hídrico de base física (Hydrus-1D) para simular la evapotranspiración real (ETA) y la percolación neta (PN) para el período de referencia y los períodos futuros. Las principales conclusiones fueron las siguientes: a) El LARS-WG superó al WRF en la simulación de las temperaturas de referencia y las precipitaciones; b) ambos métodos de reducción de escala mostraron cambios direccionales similares en las temperaturas y precipitaciones futuras; c) esto, a su vez, creó cambios direccionales similares en la mediana de AET y NP para la temporada de crecimiento futura, aunque el aumento de la NP para LARS-WG fue mayor que para el WRF. Los incrementos relativos de NP previstos para el futuro fueron mucho más altos que los incrementos relativos de los futuros AET, particularmente para las cubiertas de recuperación.
统计降尺度法和动力降尺度法评价气候变化对矿山复垦盖层区的水平衡影响
加拿大油砂业用短期 (< ≈10年) 野外监测数据校正的SVAT水平衡模型评价矿山复垦盖层设计的长久 (≈60年) 性能. 虽然该评价方法利用了长期历史气候数据, 但未将气候变化影响纳入分析当中. 全球气候变化预测的统计降尺度法常用以获取局部特定地点气候信息, 高分辨率动力降尺度法也可以实现. 后一种方法还未曾被用于当地特定矿山复垦盖层区预测。研究探讨了加拿大阿尔伯塔省北部三个复垦盖层区和三个自然站点在未来特定地点的统计和动态气候变化预测条件下水均衡组分之间的差异. 利用历史气象记录建立了基线周期. 利用温度数据库和采用Hargreaves-Samani方法计算潜在蒸散发(PET). 统计降尺度法使用的是LARS-WG气象发生器和GCM全球环流模型的温度和降水数据. 采用WRF气象研究和预报模型生成4 km网格尺度的动态气候变化预测. 这些气候变化预测被引入水平衡物理模型 (Hydrus-1D), 模拟计算基线和未来的实际蒸散发(AET)和净入渗量 (NP). 主要发现: (a) LARS-WG在模拟基线温度和降水方面优于WRF; (b) 两种降尺度方法均显示未来温度和降水具有相似的方向性迁移; (c) 虽然LARS-WG预测的净入渗量 (NP)增长大于WRF预测, 未来季节性实际蒸散发(AET)和净入渗量(NP) 中位数也产生了类似方向性迁移. 尤其在复垦覆盖区, 未来净入渗量(NP)相对增长远高于未来实际蒸散发 (AET) 相对增长.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Data and Material Availability
Climate and soil monitoring data for all the reclamation covers at the Mildred Lake and Aurora North mine sites are available through the Syncrude watershed research database (https://syncrude.emline.ca/) per the outlined data policy. The global climate model outputs are made available by the WCRP (https://esgf-node.llnl.gov/). For the WRF results, please contact the co-author, Dr. Yanping Li. For all other data, simulated water balance components, and code required to run Hydrus-1D, please contact the corresponding author.
References
Alam MS, Barbour SL, Elshorbagy A, Huang M (2018) The impact of climate change on the water balance of oil sands reclamation covers and natural soil profiles. J Hydrometeorol 19:1731–1752. https://doi.org/10.1175/JHM-D-17-0230.1
Alam MS, Barbour SL, Huang M (2020) Characterizing uncertainty in the hydraulic parameters of oil sands mine reclamation covers and its influence on water balance predictions. Hydrol Earth Syst Sci 24:735–759. https://doi.org/10.5194/hess-24-735-2020
Alam MS, Elshorbagy A (2015) Quantification of the climate change-induced variations in intensity-duration-frequency curves in the Canadian prairies. J Hydrol 527:990–1005. https://doi.org/10.1016/j.jhydrol.2015.05.059
Alam MS, Barbour SL, Elshorbagy A, Huang M (2017) The impact of climate change on the performance of oil sands reclamation covers: a comparison of multiple general circulation models and representative concentration pathways. In: Proceedings of 70th Canadian Geotechnical Soc Conference, Ottawa
Alexander LV, Zhang X, Peterson TC, Caesar J, Gleason B, Klein Tank AMG, Haylock M, Collins D, Trewin B, Rahimzadeh F, Tagipour A, Rupa Kumar K, Revadekar J, Griffiths G, Vincent L, Stephenson DB, Burn J, Aguilar E, Brunet M, Taylor M, New M, Zhai P, Rusticucci M, Vazquez-Aguirre JL (2006) Global observed changes in daily climate extremes of temperature and precipitation. J Geophys Res 111:1–22. https://doi.org/10.1029/2005JD006290
Barbour SL, Chapman D, Qualizza C, Kessler S, Boese C, Shurniak R, Meiers M, O’Kane M, Wall S (2004) Tracking the evolution of reclaimed landscapes through the use of instrumented watersheds—a brief history of the Syncrude southwest 30 overburden reclamation research program. In: Proceedings of International Instrumented Watershed Symposium, Edmonton
Bockstette J (2018) The role of soil reconstruction and soil amendments in forest reclamation. MSc thesis, Department of Renewable Resources, University of Alberta
Boese CD (2003) The design and installation of a field instrumentation program for the evaluation of soil-atmosphere water fluxes in a vegetated cover over saline/sodic shale overburden. MSc thesis, University of Saskatchewan.
CAPP (Canadian Assoc of Petroleum Producers) (2019) Crude oil forecast, markets and transportation [online]. Available at https://www.capp.ca/resources/reports/. Accessed: 10 Jan 2020
CEMA (Cumulative Environmental Management Assoc) (2006) Land capability classification system for forest ecosystems in the oil sands, 3rd edit, vol 1: Field manual for land capability determination. Alberta Environment.
Carrera-Hernandez JJ, Mendoza CA, Devito KJ, Petrone RM, Smerdon BD (2011) Effects of aspen harvesting on groundwater recharge and water table dynamics in a subhumid climate. Water Resour Res 47(5):1–18. https://doi.org/10.1029/2010WR009684
Castro CL, Pielke RA, Leoncini G (2005) Dynamic downscaling: assessment of value retained and added using the regional atmospheric modeling system (RAMS). J Geophys Res 110:1–21. https://doi.org/10.1029/2004JD004721
Chen H (2013) Projected change in extreme rainfall events in China by the end of the 21st century using CMIP5 models. Chin Sci Bull 58(12):1462–1472. https://doi.org/10.1007/s11434-012-5612-2
Chun KP, Wheater HS, Nazemi A, Khaliq MN (2013) Precipitation downscaling in Canadian prairie provinces using the LARS-WG and GLM approaches. Can Water Resour J 38(4):311–332. https://doi.org/10.1080/07011784.2013.830368
Dee DP, Uppala SM, Simmons AJ, Berrisford P, Poli P, Kobayashi S, Andrae U, Balmaseda MA, Balsamo G, Bauer P, Bechtold P, Beljaars ACM, van de Berg L, Bidlot J, Bormann N, Delsol C, Dragani R, Fuentes M, Geer AJ, Haimberger L, Healy SB, Hersbach H, Holm EV, Isaksen L, Kallberg P, Kohler M, Matricardi M, McNally AP, Monge-Sanz BM, Morcrette JJ, Park BK, Peubey C, de Rosnay P, Tavolato C, Thepaut JN, Vitart F (2011) The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q J R Meteorol Soc 137(656):553–597. https://doi.org/10.1002/qj.828
Dobchuk BS, Shurniak RE, Barbour SL, O’Kane MA, Song Q (2013) Long-term monitoring and modelling of a reclaimed watershed cover on oil sands tailings. Int J Min Reclam Env 27(3):180–201. https://doi.org/10.1080/17480930.2012.679477
Done J, Davis CA, Weisman M (2004) The next generation of NWP: explicit forecasts of convection using the weather research and forecasting (WRF) model. Atmos Sci Lett 5(6):110–117. https://doi.org/10.1002/asl.72
Eyring V, Bony S, Meehl GA, Senior CA, Stevens B, Stouffer RJ, Taylor KE (2016) Overview of the coupled model intercomparison project phase 6 (CMIP6) experimental design and organization. Geosci Model Dev 9:1937–1958. https://doi.org/10.5194/gmd-9-1937-2016
Feddes RA, Bresler E, Neuman SP (1974) Field test of a modified numerical model for water uptake by root systems. Water Resour Res 10:1199–1206. https://doi.org/10.1029/WR010i006p01199
Foley AM (2010) Uncertainty in regional climate modelling: a review. Prog Phys Geogr 34:647–670. https://doi.org/10.1177/0309133310375654
Fosser G, Khodayar S, Berg P (2015) Benefit of convection permitting climate model simulations in the representation of convective precipitation. Clim Dyn 44(1–2):45–60. https://doi.org/10.1007/s00382-014-2242-1
Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological. Int J Climatol 27:1547–1578. https://doi.org/10.1002/joc
Gao Y, Fu JS, Drake JB, Liu Y, Lamarque JF (2012) Projected changes of extreme weather events in the eastern United States based on a high resolution climate modeling system. Environ Res Lett 7(4):1–12. https://doi.org/10.1088/1748-9326/7/4/044025
Government of Alberta (2017) Oil sands: facts and stats. open.alberta.ca/publications/oil-sands-facts-and-stats, accessed 01 Jun 2020
Hargreaves GH, Samani ZA (1985) Reference crop evapotranspiration from temperature. Appl Eng Agric 1(2):96–99
Hassanzadeh E, Nazemi A, Elshorbagy A (2014) Quantile-based downscaling of precipitation using genetic programming: application to IDF curves in Saskatoon. J Hydrol Eng 19(5):943–955. https://doi.org/10.1061/(ASCE)HE.1943-5584.0000854
Held IM, Soden BJ (2006) Robust responses of the hydrological cycle to global warming. J Clim 19(21):5686–5699. https://doi.org/10.1175/JCLI3990.1
Huang M, Barbour SL, Carey SK (2015a) The impact of reclamation cover depth on the performance of reclaimed shale overburden at an oil sands mine in northern Alberta, Canada. Hydrol Process 29(12):2840–2854. https://doi.org/10.1002/hyp.10229
Huang M, Elshorbagy A, Lee Barbour S, Zettl J, Si BC (2011a) System dynamics modeling of infiltration and drainage in layered coarse soil. Can J Soil Sci 91(2):185–197. https://doi.org/10.4141/cjss10009
Huang M, Hilderman JN, Barbour SL (2015b) Transport of stable isotopes of water and sulphate within reclaimed oil sands saline-sodic mine overburden. J Hydrol 529:1550–1561. https://doi.org/10.1016/j.jhydrol.2015.08.028
Huang M, Lee Barbour S, Elshorbagy A, Zettl J, Si BC (2011b) Water availability and forest growth in coarse-textured soils. Can J Soil Sci 91(2):199–210. https://doi.org/10.4141/cjss10012
Huang M, Lee Barbour S, Elshorbagy A, Zettl JD, Si BC (2011c) Infiltration and drainage processes in multi-layered coarse soils. Can J Soil Sci 91(2):169–183. https://doi.org/10.4141/cjss09118
IPCC Intergovernmental Panel on Climate Change (2000) Land use, land-use change and forestry: a special report of the IPCC. Watson R, Noble I, Bolin B, Ravindranath NH, Verardo D, Andrasko K (Eds), Cambridge University Press, Cambridge
IPCC Intergovernmental Panel on Climate Change (2013) Climate Change 2013: The Physical Science Basis. In: Stocker QD (ed) Contribution of Working Group I to the 5th Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
Joubert AM, Hewitson BC (1997) Simulating present and future climates of southern Africa using general circulation models. Prog Phys Geogr 21(1):51–78. https://doi.org/10.1177/030913339702100104
Karl TR, Knight RW, Plummer N (1995) Trends in high-frequency climate variability in the twentieth century. Nature 377(6546):217–220. https://doi.org/10.1038/377217a0
Keshta N, Elshorbagy A, Carey S (2009) A generic system dynamics model for simulating and evaluating the hydrological performance of reconstructed watersheds. Hydrol Earth Syst Sci 13(6):865–881. https://doi.org/10.5194/hess-13-865-2009
Keshta N, Elshorbagy A, Carey S (2012) Impacts of climate change on soil moisture and evapotranspiration in reconstructed watersheds in northern Alberta Canada. Hydrol Process 26(9):1321–1331. https://doi.org/10.1002/hyp.8215
Li Y, Li Z, Zhang Z, Chen L, Kurkute S, Scaff L, Pan X (2019) High-resolution regional climate modeling and projection over western Canada using a weather research forecasting model with a pseudo-global warming approach. Hydrol Earth Syst Sci 23(11):4635–4659. https://doi.org/10.5194/hess-23-4635-2019
Li Y, Szeto K, Stewart RE, Thériault JM, Chen L, Kochtubajda B, Liu A, Boodoo S, Goodson R, Mooney C, Kurkute S (2017) A numerical study of the June 2013 flood-producing extreme rainstorm over southern Alberta. J Hydrometeorol 18(8):2057–2078. https://doi.org/10.1175/JHM-D-15-0176.1
Liu C, Ikeda K, Rasmussen R, Barlage M, Newman AJ, Prein AF, Chen F, Chen L, Clark M, Dai A, Dudhia J, Eidhammer T, Gochis D, Gutmann E, Kurkute S, Li Y, Thompson G, Yates D (2017) Continental-scale convection-permitting modeling of the current and future climate of North America. Clim Dyn 49(1–2):71–95. https://doi.org/10.1007/s00382-016-3327-9
May W (2008) Potential future changes in the characteristics of daily precipitation in Europe simulated by the HIRHAM regional climate model. Clim Dyn 30(6):581–603. https://doi.org/10.1007/s00382-007-0309-y
Meehl GA, Covey C, Delworth T, Latif M, McAvaney B, Mitchell JFB, Stouffer RJ, Taylor KE (2007) The WCRP CMIP3 multimodel dataset: a new era in climate change research. Bull Am Meteorol Soc 88(9):1383–1394. https://doi.org/10.1175/BAMS-88-9-1383
Meehl GA, Covey C, Mcavaney B, Latif M, Stouffer RJ (2004) Overview of the coupled model intercomparison project. Bull Am Meteorol Soc 86(1):89–96. https://doi.org/10.1175/BAMS-86-1-89
Meiers GP, Barbour SL, Qualizza CV, Dobchuk BS (2011) Evolution of the hydraulic conductivity of reclamation covers over sodic/saline mining overburden. J Geotech Geoenviron 137(10):968–976. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000523
Mitchell TD, Hulme M (1999) Predicting regional climate change: living with uncertainty. Prog Phys Geogr 23:57–78. https://doi.org/10.1191/030913399672023346
Nazemi A, Elshorbagy A, Pingale S (2011) Uncertainties in the estimation of future annual extreme daily rainfall for the city of Saskatoon under climate change effects. In: Proceedings of 20th Canadian Hydrotechnical Conf, Ottawa
OKC (O’Kane Consultants Inc) (2001) Southwest sand storage and 30-dump automated water balance monitoring systems at Syncrude Canada Ltd, OKC Report 653–2
OKC (O’Kane Consultants Inc) (2016) Instrumented watershed monitoring program at the southwest sands storage facility: Performance monitoring report for the period Jan 2015 to Dec 2015. OKC Report 690-01-72
Prein AF, Rasmussen RM, Ikeda K, Liu C, Clark MP, Holland GJ (2017) The future intensification of hourly precipitation extremes. Nat Clim Change 7(1):48–52. https://doi.org/10.1038/nclimate3168
Price JS, McLaren RG, Rudolph DL (2010) Landscape restoration after oil sands mining: conceptual design and hydrological modelling for fen reconstruction. Int J Min Reclam Environ 24(2):109–123. https://doi.org/10.1080/17480930902955724
Qualizza C, Chapman D, Barbour SL, Purdy B (2004) Reclamation research at Syncrude Canada’s mining operation in Alberta’s Athabasca oil sands region. In: Proceedings of 16th International Conf on Ecological Restoration SER2004, Victoria
Racsko P, Szeidl L, Semenov M (1991) A serial approach to local stochastic weather models. Ecol Model 57(1–2):27–41. https://doi.org/10.1016/0304-3800(91)90053-4
Rasmussen R, Ikeda K, Liu C, Gochis D, Clark M, Dai A, Gutmann E, Dudhia J, Chen F, Barlage M, Yates D, Zhang G (2014) Climate change impacts on the water balance of the Colorado headwaters: high-resolution regional climate model simulations. J Hydrometeorol 15(3):1091–1116. https://doi.org/10.1175/JHM-D-13-0118.1
Rasmussen R, Liu C, Ikeda K, Gochis D, Yates D, Chen F, Tewari M, Barlage M, Dudhia J, Yu W, Miller K, Arsenault K, Grubisic V, Thompson G, Gutmann E (2011) High-resolution coupled climate runoff simulations of seasonal snowfall over Colorado: a process study of current and warmer climate. J Clim 24(12):3015–3048. https://doi.org/10.1175/2010JCLI3985.1
Semenov MA (2007) Development of high-resolution UKCIP02-based climate change scenarios in the UK. Agric For Meteorol 144(1–2):127–138. https://doi.org/10.1016/j.agrformet.2007.02.003
Semenov MA, Barrow EM (1997) Use of a stochastic weather generator in the development of climate change scenarios. Clim Change 35(4):397–414. https://doi.org/10.1023/A:1005342632279
Sigouin MJP, Dyck M, Si BC, Hu W (2016) Monitoring soil water content at a heterogeneous oil sand reclamation site using a cosmic-ray soil moisture probe. J Hydrol 543(Part B):510–522. https://doi.org/10.1016/j.jhydrol.2016.10.026
Simunek J, Sejna M, Saito H, Sakai M, van Genuchten MT (2013) The HYDRUS software package for simulating the two- and three- dimensional movement of water, heat, and multiple solutes in variably-saturated media, Technical manual version 2.0, University of California, Riverside, CA
Skamarock C, Klemp B, Dudhia J, Gill O, Barker D, Duda G, Huang X, Wang W, Powers G (2008) A description of the advanced research WRF version 3. NCAR Technical Note NCAR/TN-475+STR. https://doi.org/10.5065/D68S4MVH
Srivastav RK, Schardong A, Simonovic SP (2014) Equidistance quantile matching method for updating IDF curves under climate change. Water Resour Manag 28(9):2539–2562. https://doi.org/10.1007/s11269-014-0626-y
Strong WL, Leggat KR (1981) Ecoregions of Alberta. Alberta Energy and Natural Resources Tech. Report T/4
Sun J (2014) Record-breaking SST over mid-North Atlantic and extreme high temperature over the Jianghuai–Jiangnan region of China in 2013. Chin Sci Bull 59(27):3465–3470. https://doi.org/10.1007/s11434-014-0425-0
Suncor Energy Inc. (2007) Climate change in the oil sands region. Voyager South Project Environmental Impact Report, Appendix 3, Government of Alberta. www.open.alberta.ca/publications/4070009. Accessed 01 Jun 2020
Taylor KE, Stouffer RJ, Meehl GA (2012) An overview of CMIP5 and the experiment design. Bull Am Meteorol Soc 93(4):485–498. https://doi.org/10.1175/BAMS-D-11-00094.1
Thompson C, Mendoza CA, Devito KJ (2017) Potential influence of climate change on ecosystems within the Boreal Plains of Alberta. Hydrol Process 31(11):2110–2124. https://doi.org/10.1002/hyp.11183
Weisman ML, Davis C, Wang W, Manning KW, Klemp JB, Weisman ML, Davis C, Wang W, Manning KW, Klemp JB (2008) Experiences with 0–36-h explicit convective forecasts with the WRF-ARW model. Weather Forecast 23(3):407–437. https://doi.org/10.1175/2007WAF2007005.1
Wilby RL, Wigley TML (1997) Downscaling general circulation model output: a review of methods and limitations. Prog Phys Geogr 21(4):530–548. https://doi.org/10.1177/030913339702100403
Wilby RL, Wigley TML, Conway D, Jones PD, Hewitson BC, Main J, Wilks DS (1998) Statistical downscaling of general circulation model output: a comparison of methods. Water Resour Res 34:2995–3008. https://doi.org/10.1029/98WR02577
Wilby RL, Dawson CW (2007) SDSM 4.2—a decision support tool for the assessment of regional climate change impacts: version 4.2, User Manual, Lancaster University, UK
Wood AW, Lettenmaier DP, Palmer RN (1997) Assessing climate change implications for water resources planning. Clim Change 37:203–228. https://doi.org/10.1007/978-94-017-1051-0_12
Zettl J, Lee Barbour S, Huang M, Si BC, Leskiw LA (2011) Influence of textural layering on field capacity of coarse soils. Can J Soil Sci 91(2):133–147. https://doi.org/10.4141/cjss09117
Zhang L, Nan Z, Yu W, Zhao Y, Xu Y (2018) Comparison of baseline period choices for separating climate and land use/land cover change impacts on watershed hydrology using distributed hydrological models. Sci Total Environ 622–623:1016–1028. https://doi.org/10.1016/j.scitotenv.2017.12.055
Zhang X, Vincent LA, Hogg W, Niitsoo A (2000) Temperature and precipitation trends in Canada during the 20th century. Atmos Ocean 38(3):395–429. https://doi.org/10.1080/07055900.2000.9649654
Acknowledgements
The work was financed by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Syncrude Canada Ltd. (File No. IRCPJ 428588-11; IRCSA 428587-11). Special thanks to (a) Dr. Zhenhua Li for sharing the WRF model outputs, and (b) Amy Heidman of O’Kane Consultants Inc. for providing uninterrupted access to the Syncrude watershed research database. We thank Stephanie Villeneuve for preparing Fig. 1.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Alam, M.S., Barbour, S.L., Huang, M. et al. Using Statistical and Dynamical Downscaling to Assess Climate Change Impacts on Mine Reclamation Cover Water Balances. Mine Water Environ 39, 699–715 (2020). https://doi.org/10.1007/s10230-020-00695-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10230-020-00695-6