Skip to main content
Log in

Spatial Relationships of Water Resources with Energy Consumption at Coal Mining Operations in China

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The spatial characterization and regional differences of water use in China’s coal mines were investigated based on a high spatial resolution mine site dataset, and their spatial synergic relationships with energy consumption were explored using a geographic weighted regression model. There were significant and obvious regional differences in water use in coal production. Most coal-related water withdrawal occurs in Shandong, Henan, Hebei, Anhui, Shanxi, Shaanxi, and Inner Mongolia provinces, accounting for ≈ 73% of the nation’s total energy-related water withdrawal. The cities of Erdos, HulunBuir, Yulin, Shuozhou, and Changzhi have the largest coal-related water consumption, ≈ 36% of the nation’s total, while large coal-related wastewater discharges are mostly concentrated in Shaanxi, Hebei, Shanxi, Henan, and Inner Mongolia provinces, and sporadically in Guizhou Province. There was a considerable positive correlation between consumptive water use and energy consumption in coal production. This study provides a spatially integrated technology to coordinate regional energy and water plans, identify regions suffering the most severe impacts, and can serve as a reference for the transition of coal resource-type cities.

Zusammenfassung

Basierend auf einem räumlich hoch aufgelösten Datensatz wurden räumliche Charakteristika und regionale Unterschiede in der Wassernutzung im Kohlebergbau in China untersucht. Weiterhin wurde deren räumlich-synergetische Verknüpfung mit dem Energieverbrauch mittels eines geographisch gewichteten Regressionsmodells (EN: geographic weighted regression, GWR) erforscht. Es bestehen signifikante und offensichtliche regionale Unterschiede in der Wassernutzung bei der Kohleförderung. Wasserentnahme im Zusammenhang mit Kohlebergbau findet sich vornehmlich in den Provinzen Shandong, Henan, Hebei, Anhui, Shanxi, Shaanxi und Innere Mongolei, die zusammen rund 73 % der nationalen, energiebezogenen Wasserentnahme aufweisen. Die Städte Erdos, Hulun Buir, Yulin, Shuothou und Changzhi weisen mit rund 36 % den national höchsten kohlebezogenen Wasserverbrauch auf, wohingegen die Abwasserproduktion im Zusammenhang mit Kohle überwiegend in den Provinzen Shaanxi, Hebei, Shanxi, Henan und Innere Mongolei konzentriert ist. Es wurde eine deutlich positive Korrelation zwischen konsumtivem Wasserverbrauch und Energieverbrauch in der Kohleproduktion aufgezeigt. Die vorliegende Studie bietet eine räumlich integrierte Technologie zur Koordination regionaler Energie- und Wasserpläne und zur Identifikation von Regionen mit drastischsten Auswirkungen, und kann darüber hinaus als Referenz für den Wandel von kohlebestimmten Städten Anwendung finden.

抽象

在中国, 煤炭开采消耗大量淡水资源。基于高空间分辨率的煤矿分布数据库, 研究了煤炭生产用水的空间分布特征和区域差异, 运用地理加权回归模型(GWR)分析了煤炭开采与能源消耗的空间对应关系。结果表明, 中国煤炭生产用水具有明显的地区差异, 煤炭生产相关的用水主要集中在山东、河南、河北、安徽、山西、陕西、内蒙古等省的一些城市, 占全国能源相关用水总量的73.05%; 鄂尔多斯、呼伦贝尔、榆林、朔州和长治是我国煤炭相关用水最多的城市, 约占全国总用水量的36.37%。煤炭相关废水排放主要集中在陕西、河北、山西、河南、内蒙古及贵州的个别地方。研究进一步揭示, 煤炭生产过程的消耗性用水和能源消耗之间存在较强正相关关系。研究有望为识别遭受严重能源和水资源协调开发问题的焦点地区提供一种综合空间技术, 为煤炭资源型城市转型提供有益参考。

Resumen

Las operaciones de extracción de carbón utilizan gran cantidad de los recursos de agua dulce en China. En este trabajo, se investigó la caracterización espacial y las diferencias regionales del uso del agua en la producción de carbón con base en un conjunto de datos de sitios de mina de alta resolución espacial y se exploraron sus relaciones sinérgicas espaciales con el consumo de energía con base en el modelo GWR (regresión geográfica ponderada). Los resultados indican que existen diferencias regionales significativas y obvias en el uso del agua en la producción de carbón; la mayoría de las extracciones de agua relacionadas con el carbón ocurren en las ciudades de las provincias de Shandong, Henan, Hebei, Anhui, Shanxi, Shaanxi y Mongolia Interior, China, lo que representa aproximadamente el 73,05% del total nacional de extracción de agua relacionada con la energía; Erdos, HulunBuir, Yulin, Shuozhou y Changzhi, con el mayor consumo de agua relacionado con el carbón, ocupan aproximadamente el 36,37% del total nacional y las grandes descargas de aguas residuales relacionadas con el carbón se concentran principalmente en las provincias de Shaanxi, Hebei, Shanxi, Henan y Mongolia Interiora aunque esporádicamente también ocurrió en la provincia de Guizhou. El estudio también revela una correlación positiva considerable entre el consumo de agua de consumo y el consumo de energía en la producción de carbón y se espera que proporcione una tecnología espacialmente integrada para identificar las zonas críticas que sufren los impactos más severos; esto permitirá coordinar los planes regionales de energía y agua, sirviendo como valor de referencia para la transición de las ciudades del tipo de recursos de carbón.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Anselin L (1995) Local indicators of spatial association-LISA. Geogr Anal 27(2):93–115 [In Chinese]

    Article  Google Scholar 

  • Brunsdon C, Fotheringham S, Charlton M (1998) Geographically weighted regression. J Roy Stat Soc D 47(3):431–443

    Article  Google Scholar 

  • Clemmer S, Rogers J, Sattler S, Macknick J, Mai T (2013) Modeling low-carbon US electricity futures to explore impacts on national and regional water use. Environ Res Lett 8(1):865–3879

    Article  Google Scholar 

  • Fotheringham A, Charlton M, Brunsdon C (2001) Spatial variations in school performance: a local analysis using geographically weighted regression. Geogr Env Modell 5(1):43–66

    Article  Google Scholar 

  • Guan D, Hubacek K (2008) A new and integrated hydro-economic accounting and analytical framework for water resources: a case study for North China. J Env Manage 88(4):1300–1313

    Article  Google Scholar 

  • Hightower M, Pierce S (2008) The energy challenge. Nature 452(7185):285–286

    Article  Google Scholar 

  • IEA (2018) Coal market report 2017. Beijing

  • Leung Y, Mei C, Zhang W (2000) Statistical tests for spatial nonstationarity based on the geographically weighted regression model. Environ Plan A 32(1):9–32

    Article  Google Scholar 

  • Lewis J, Fridley D, Price L, Lu H, Romankiewicz J (2015) Understanding China’s non–fossil energy targets. Science 350(6264):1034–1036

    Article  Google Scholar 

  • Li X, Feng K, Siu YL, Hubacek K (2012) Energy-water nexus of wind power in China: the balancing act between CO2 emissions and water consumption. Energy Policy 45(11):440–448

    Article  Google Scholar 

  • Li Z, Fu J, Jiang D, Lin G, Dong D, Yan X (2017) Spatiotemporal distribution of U5MR and their relationship with geographic and socioeconomic factors in China. Int J Environ Res Pub Health 14(12):1428

    Article  Google Scholar 

  • Lin G, Fu J, Jiang D, Hu W, Dong D, Huang Y, Zhao M (2014) Spatio-temporal variation of PM2.5 concentrations and their relationship with geographic and socioeconomic factors in China. Int J Environ Res Pub Health 11(1):173–186

    Article  Google Scholar 

  • Lin G, Fu J, Jiang D, Wang J, Wang Q, Dong D (2015) Spatial variation of the relationship between PM2.5 concentrations and meteorological parameters in China. Biomed Res Int 2015(21):259–265

    Google Scholar 

  • Lin G, Jiang D, Duan R, Fu J, Hao M (2017) Water use of fossil energy production and supply in China. Water 9(7):513

    Article  Google Scholar 

  • Lin J, Fridley D, Lu H, Price L, Zhou N (2018) Has coal use peaked in China: near-term trends in China’s coal consumption. Energy Policy 123:208–214

    Article  Google Scholar 

  • Liu J, Dong S, Li Z (2011) Comprehensive evaluation of China’s water resources carrying capacity. J Nat Resour 26(2):258–269 [In Chinese]

    Google Scholar 

  • Ministry of Science and Technology of the People´s Republic of China (2007) China sustainable development strategy report 2007–water: governance and innovation. Science Press, Beijing [In Chinese]

    Google Scholar 

  • Miron J (1984) Spatial autocorrelation in regression analysis: a beginner’s guide. In: Gaile GL, Willmott CJ (eds) Spatial Statistics and Models. Theory and Decision Library, vol 40. Springer, Dordrecht

    Google Scholar 

  • Moran P (1950) Notes on continuous stochastic phenomena. Biomertrika 37(1/2):17–23

    Article  Google Scholar 

  • NEAC (2019) Announcement on the production and construction of coal mine capacity. [In Chinese]

  • Perugini M, Nuñez E, Baldi L, Esposito M, Serpe F, Amorena M (2012) Predicting dioxin-like PCBs soil contamination levels using milk of grazing animal as indicator. Chemosphere 89(8):964–969

    Article  Google Scholar 

  • Shang Y, Hei P, Li S, Shang L, Li X, Wei Y, Jia D, Jiang G, Ye Y, Gong J, Lei X, Hao M, Qiu Y, Liu J, Wang H (2016) China’s energy-water nexus: assessing water conservation synergies of the total coal consumption cap strategy until 2050. Appl Energy 210:643–660

    Article  Google Scholar 

  • Soler I, Gemar G (2018) Hedonic price models with geographically weighted regression: an application to hospitality. J Destin Mark Manage 9:126–137

    Google Scholar 

  • Song X (2015) Distribution and evaluation of coal resources suitable for open-pit mining in China. Coal Eng 47(12):124–126 [In Chinese]

    Google Scholar 

  • Yates D, Meldrum J, Averyt K (2014) The influence of future electricity mix alternatives on southwestern US water resources. Env Res Lett 8(4):45005–45019

    Article  Google Scholar 

  • Yi W (2014) Dealing with challenges of energy and climate change: policy-oriented researches. Bull Chin Acad Sci 4:17 [In Chinese]

    Google Scholar 

  • Zhang C, Anadon L (2013) Life cycle water use of energy production and its environmental impacts in China. Environ Sci Technol 47(24):14459–14467

    Article  Google Scholar 

  • Zhang C, Zhong L, Fu X, Wang J, Wu Z (2016) Revealing water stress by the thermal power industry in China based on a high spatial resolution water withdrawal and consumption inventory. Environ Sci Technol 50(4):1642–1652

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from National Natural Science Foundation of China (Grants 41971250, U1710258 and 41972255), the State Key Laboratory of Resources and Environmental Information System, Institute of Geographical Sciences and Natural Resources Research (Grant 2016RC203), Fundamental Science on Radioactive Geology and Exploration Technology Laboratory (Grant RGET1902), State Key Laboratory of Nuclear Resources and Environment (Grant NRE1906), China University of Mining and Technology Beijing Campus (Grant 00-800015Z1175); Youth Innovation Promotion Association (Grant 2018068) and Fundamental Research Funds for the Central Universities (Grant 2019QD01).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Lin, Jingying Fu or Donglin Dong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, G., Jiang, D., Fu, J. et al. Spatial Relationships of Water Resources with Energy Consumption at Coal Mining Operations in China. Mine Water Environ 39, 407–415 (2020). https://doi.org/10.1007/s10230-020-00663-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-020-00663-0

Keywords

Navigation