Microbial Geochemistry of the Acidic Saline Pit Lake of Brunita Mine (La Unión, SE Spain)

Mikrobielle Geochemie des sauren und salzhaltigen Sees im ehemaligen Tagbau der Brunita Mine (La Union, Cartagena, SE Spanien)

Geoquímica microbiana del lago ácido y salino de la corta de la mina Brunita (La Unión, SE España)

通过高压注入试验估算深部裂隙岩层的导水率

Abstract

We present the first study of a unique acidic lake formed in the Brunita open pit (La Unión mines, Cartagena, SE Spain). This pit lake exhibits chemical characteristics typical of AMD, such as low pH (pH 2.2–5.0) and high iron content (500–6400 mg/L total Fe). It also has some of the highest sulfate concentrations reported to date in pit lakes (26,000–38,400 mg/L \({\text{SO}}_{ 4}^{ 2- }\)) and transition metals like Mn (up to 2000 mg/L), Zn (500 mg/L), or Cu (250 mg/L). In addition, we found abnormally high concentrations of salt-forming ions (e.g. 5500 mg/L Mg, 750–1300 mg/L Cl, and 300–630 mg/L Na). The resulting high salinity (58‰) at the bottom creates a meromictic lake despite the lake’s low relative depth (9%), with an anoxic, reducing monimolimnion isolated from the oxygenated mixolimnion. In the monimolimnion, we observed decreased metal concentrations (e.g. Cu, Zn, Cd, Cr, Pb, Th). We hypothesize that these metals are being removed by interaction with biogenic H2S and subsequent precipitation as metal sulfides. Scanning electron microscopy shows sub-micron, spherical particles of ZnS in close association with cocci and rod-like bacteria. Analysis of the microbial community composition through 16S rRNA gene amplicon sequencing revealed different genera of sulfate-reducing bacteria (SRB) in the monimolimnion, including Desulfobacca, Desulfomonile, Desulfurispora, and Desulfosporosinus. Their apparent ability to reduce sulfate and selectively precipitate potentially toxic metals, and their resistance to this lake’s extreme geochemical conditions, makes these bacteria of great interest for biotechnological applications (e.g. bioremediation and biomining).

Zusammenfassung

Wir stellen hier die erste Untersuchung eines einzigartigen sauren Sees vor, der sich in dem Brunita Tagbau gebildet hat. Der See zeigt typische Charakteristika saurer Bergbauwässer, etwa niedrigen pH (2,2-5,0) und hohe Eisengehalte (500-6.400 mg/L gesamt-Fe). Er hat auch die höchste Sulfatkonzentration, welche jemals in Bergbauseen gefunden wurde (26.000-38.400 mg/L \({\text{SO}}_{ 4}^{ 2- }\)), sowie Übergangsmetalle wie Mn (bis 2000 mg/L), Zn (500 mg/L), oder Cu (250 mg/L). Zudem fanden wir abnorm hohe Konzentrationen von salzbildenden Ionen (zum Beispiel 5.500 mg/L Mg, 750-1.300 mg/L Cl, und 300-630 mg/L Na). Die resultierende hohe Salinität (58  ‰) am Boden verursacht einen meromiktischen Charakter des Sees trotz seiner geringen relativen Tiefe (9%), mit einem anoxischen, reduzierenden Monimolimnion welches von dem sauerstofführenden Mixolimnion getrennt ist. Im Monimolimnion fanden wir geringere Metallkonzentrationen (z.B. Cu, Zn, Cd, Cr, Pb, Th). Wir vermuten, daß diese Metalle durch Interaktion mit biogenem H2S abstrahiert werden und danach als Metallsulfide ausfallen. Das Rasterelektronenmikroskop zeigt rundliche Partikel von ZnS nahe von Kokken und stäbchenförmigen Bakterien. Die Analyse der mikrobiellen Gemeinschaft mittels 16S rRNA Gen Amplicon Sequenzierung ergab die Anwesenheit verschiedener Genera sulfatreduzierender Bakterien im Monimolimnion, unter anderen Desulfobacca, Desulfomonile, Desulfurispora, und Desulfosporosinus. Ihre scheinbare Fähigkeit, Sulfat zu reduzieren und potentiell toxische Metalle selektiv auszufällen, und ihre Resistenz gegen die extremen geochemischen Bedingungen in dem See verleiht diesen Bakterien ein großes Interesse für biotechnologische Anwendungen (u.a. Bioremediation und Biogewinnung).

Resumen

Presentamos el primer estudio de un lago ácido único formado en la mina a cielo abierto Brunita (minas de La Unión, Cartagena, SE España). Este lago minero presenta características químicas típicas de los AMD, como un pH bajo (pH 2.2–5.0) y un alto contenido de hierro (500–6400 mg/L de Fe total). También tiene algunas de las concentraciones más altas de sulfato registradas hasta la fecha en lagos mineros (26,000–38,400 mg/L \({\text{SO}}_{ 4}^{ 2- }\)) y metales de transición como Mn (hasta 2000 mg/L), Zn (500 mg/L) o Cu (250 mg/L). Además, encontramos concentraciones anormalmente altas de iones formadores de sales (por ejemplo, 5500 mg/L de Mg, 750-1300 mg/L de Cl y 300-630 mg/L de Na). La alta salinidad resultante en el fondo (58 ‰) crea un lago meromíctico a pesar de la baja profundidad relativa del lago (9%), con un monimolimnion anóxico reductor aislado del mixolimnion oxigenado. En el monimolimnion, observamos una disminución de las concentraciones de metales (por ejemplo, Cu, Zn, Cd, Cr, Pb, Th). Suponemos que estos metales se eliminan mediante la interacción con H2S biogénico y la posterior precipitación como sulfuros metálicos. La microscopía electrónica de barrido muestra partículas esféricas submicrométricas de ZnS en estrecha asociación con bacterias de tipo coco y bacilo. El análisis de la composición de la comunidad microbiana a través de la secuenciación del amplicón del gen 16S rRNA reveló diferentes géneros de bacterias reductoras de sulfato en el monimolimnion, incluidos Desulfobacca, Desulfomonile, Desulfurispora y Desulfosporosinus. Su aparente capacidad para reducir el sulfato y precipitar selectivamente metales potencialmente tóxicos y su resistencia a las condiciones geoquímicas extremas de este lago, hace que estas bacterias sean de gran interés para aplicaciones biotecnológicas (por ejemplo, biorremediación y biominería).

抽象

第一次研究了独特的布伦纳露天矿(La Union mines, Cartagena, SE Spain)酸性矿坑湖。湖水显示出典型的酸性矿井水(AMD)化学特征,例如低pH值(pH 2.2-5.0)和富铁(总铁浓度500- 6400 mg/L)。湖水具有迄今报道矿坑湖中最高的硫酸盐含量(26000 -38400 mg/L \({\text{SO}}_{ 4}^{ 2- }\))和过渡金属浓度,例如锰(2000 mg/L)、锌(500 mg/L),或铜(250 mg/L)。还发现湖水含有异常高浓度的盐离子(如镁5,500 mg/L g、氯750-1300 mg/L和钠300-630 mg/L)。尽管矿坑湖相对深度较低(9%),湖底高盐度(58‰)特征使之成为半对流湖,缺氧、还原性的永滞层与含氧的混成层相对独立。在永滞层中,观察到金属离子(如铜、锌、镉、铬、铅和钍)浓度降低。推测这些金属会正在经过与生物成因气体(H2S)相互作用及随后的金属硫化物沉淀作用被去除。扫描电镜发现亚微米级球形硫化锌(ZnS)颗粒与球菌和杆状细菌密切相关。采用16S rRNA基因扩增子测序手段分析了微生物群落组成,发现永滞层内生存着不同属的硫酸盐还原菌,包括Desulfobacca、Desulfomonile、Desulfurispora和Desulfosporosinus。它们具有明显的去除硫酸盐和选择性沉淀潜在有毒金属的能力,具有承受湖水极端地球化学条件的能力。这些细菌有望引发生物技术方面 (例如生物修复和生化采矿)的关注。

This is a preview of subscription content, access via your institution.

Fig. 1

(field photograph taken from point marked by arrow in picture a)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Alcolea A, Fernández-López C, Vázquez M, Caparrós A, Ibarra I, García C, Zarroca M, Rodríguez R (2015) An assessment of the influence of sulfidic mine wastes on rainwater quality in a semiarid climate (SE Spain). Atmos Environ 107:85–94

    Google Scholar 

  2. Arsène-Ploetze F, Koechler S, Marchal M, Coppée JY, Chandler M, Bonnefoy V, Bruneel O (2010) Structure, function, and evolution of the Thiomonas spp. genome. PLoS Genet 6(2):e1000859

    Google Scholar 

  3. Baker BJ, Banfield JF (2003) Microbial communities in acid mine drainage. FEMS Microbiol Ecol 44(2):139–152

    Google Scholar 

  4. Ball JW, Nordstrom DK (1991) User’s manual for WATEQ4F, with revised thermodynamic data base and test cases for calculating speciation of major, trace, and redox elements in natural waters. USGS Open-file Report 91-183, Washington DC

  5. Battaglia-Brunet F, Joulian C, Garrido F, Dictor MC, Morin D, Coupland K, Baranger P (2006) Oxidation of arsenite by Thiomonas strains and characterization of Thiomonas arsenivorans sp. nov. Antonie Van Leeuwenhoek 89(1):99–108

    Google Scholar 

  6. Boehrer B, Herzsprung P, Schultze M, Millero FJ (2010) Calculating density of water in geochemical lake stratification models. Limnol Oceanogr-Meth 8:567–574

    Google Scholar 

  7. Boehrer B, Magin K, Yusta I, Sánchez-España J (2016) Quantifying, assessing and removing extreme gas load from meromictic Guadiana pit lake, Southwest Spain. Sci Total Environ 563–564:468–477

    Google Scholar 

  8. Bond PL, Smriga SP, Banfield JF (2000a) Phylogeny of microorganisms populating a thick, subaerial, predominantly lithotrophic biofilm at an extreme acid mine drainage site. Appl Environ Microbiol 66(9):3842–3849

    Google Scholar 

  9. Bond PL, Druschel GK, Banfield JF (2000b) Comparison of acid mine drainage microbial communities in physically and geochemically distinct ecosystems. Appl Environ Microbiol 66:4962–4971

    Google Scholar 

  10. Cánovas M, Alhama I, López G (2013) La paragénesis mineralógica de la Cantera “Brunita”. In: de Jornadas VI (ed), Introducción a la investigación de la UPCT, Investigación EICM, Nº 6, pp 40–42, ISSN 1888-8356 (in Spanish)

  11. Church CD, Wilkin RT, Alpers CN, Rye RO, McCleskey RB (2007) Microbial sulfate reduction and metal attenuation in pH 4 acid mine water. Geochem Trans 8:10

    Google Scholar 

  12. Diaby N, Dold B, Pfeifer HR, Holliger C, Johnson DB, Hallberg KB (2007) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol 9:298–307

    Google Scholar 

  13. Diez-Ercilla M, López-Pamo E, Sánchez-España J (2009) Photoreduction of Fe(III) in the acidic mine pit lake of San Telmo (Iberian pyrite belt): field and experimental work. Aq Geochem 15(3):391–419

    Google Scholar 

  14. Diez-Ercilla M, Sánchez-España J, Yusta I, Wendt-Potthoff K, Koschorreck M (2014) Formation of biogenic sulfides in the water column of an acidic pit lake: biogeochemical controls and effects on trace metal dynamics. Biogeochem 121(3):519–536

    Google Scholar 

  15. Downs RT, Hall-Wallace M (2003) The American Mineralogist crystal structure database. Am Miner 88:247–250

    Google Scholar 

  16. Druschel GK, Labrenz M, Thomsen-Ebert T, Fowle DA, Banfield JF (2002) Geochemical modeling of ZnS in biofilms: an example of ore depositional processes. Econ Geol 97(6):1319–1329

    Google Scholar 

  17. Eary LE, Castendyk DN (2013) Hardrock metal mine pit lakes: Occurrence and geochemical characteristics. In: Geller W, Schultze M, Kleinmann B, Wolkersdorfer C (eds) Acidic pit lakes: the legacy of coal and metal surface mines. Springer, Berlin, pp 75–106

    Google Scholar 

  18. Falagán C, Johnson DB (2014) Acidibacter ferrireducens gen. nov., sp. nov.: an acidophilic ferric iron-reducing gammaproteobacterium. Extremophiles 18(6):1067–1073

    Google Scholar 

  19. Falagán C, Johnson DB (2015) Acidithiobacillus ferriphilus sp. nov.: a facultatively anaerobic iron- and sulfur-metabolising extreme acidophile. Int J Syst Evol Microbiol 66(1):206–211

    Google Scholar 

  20. Falagán C, Sánchez-España J, Johnson DB (2014) New insights into the biogeochemistry of extremely acidic environments revealed by a combined cultivation-based and culture-independent study of two stratified pit lakes. FEMS Microbiol Ecol 87(1):231–243

    Google Scholar 

  21. Falagán C, Sánchez-España FJ, Yusta I, Johnson DB (2015) Microbial communities in sediments in acidic, metal-rich mine lakes: results from a study in south-west Spain. Adv Mat Res 1130:7–10

    Google Scholar 

  22. Falagán C, Sánchez-España J, Yusta I, Johnson DB (2016) New insights into the microbiology of meromictic acidic pit lakes in the Iberian pyrite belt (Spain). In: Drebenstedt Carsten, Paul Michael (eds) Mining meets water—conflicts and solutions, Proc, IMWA 2016 Conf. Freiberg, Germany, pp 192–198

    Google Scholar 

  23. Falagán C, Foesel BU, Johnson DB (2017a) Acidicapsa ferrireducens sp. nov., Acidicapsa acidiphila sp. nov., and Granulicella acidiphila sp. nov.: novel acidobacteria isolated from metal-rich acidic waters. Extremophiles 21(3):459–469

    Google Scholar 

  24. Falagán C, Sánchez-España J, Yusta I, Johnson DB (2017b) Biologically-induced precipitation of aluminium in synthetic acid mine water. Miner Eng 106:79–85

    Google Scholar 

  25. Friese K, Herzprung P, Schultze M (2013) Pit lakes from coal and lignite mining. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes—the legacy of coal and metal surface mines. Springer, Heidelberg, pp 42–57

    Google Scholar 

  26. Gammons CH, Tucci NJ (2013) The Berkeley pit lake, Butte, Montana. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes—the legacy of coal and metal surface mines. Springer, Heidelberg, pp 362–376

    Google Scholar 

  27. García C (2004) Impacto y riesgo ambiental de los residuos minero-metalúrgicos de la Sierra de Cartagena-La Unión (Murcia-España). PhD thesis. Univ Politécnica de Cartagena

  28. Geller W, Schultze M, Wisotzky F (2013a) Remediation and management of acidified pit lakes and outflowing waters. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes—the legacy of coal and metal surface mines. Springer, Heidelberg, pp 225–264

    Google Scholar 

  29. Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (2013b) Acidic pit lakes: the legacy of coal and metal surface mines. Springer, Heidelberg, p 525

    Google Scholar 

  30. Giloteaux L, Duran R, Casiot C, Bruneel O, Elbaz-Poulichet F, Goni-Urriza M (2013) Three-year survey of sulfate-reducing bacteria community structure in Carnoules acid mine drainage (France), highly contaminated by arsenic. FEMS Microbiol Ecol 83:724–737

    Google Scholar 

  31. González-Toril E, Santofimia E, López E, García-Moyano A, Aguilera A, Amils R (2015) Comparative microbial ecology of the water column of an extreme acidic pit lake, Nuestra Señora del Carmen, and the Río Tinto basin (Iberian pyrite belt). Int Microbiol 17(4):225–233

    Google Scholar 

  32. Halbwachs M, Sabroux JC, Granjeon J, Kayser G, Tochon-Danguy JC, Felix A, Beard JC, Villevieille A, Vitter G, Richon B, Wuest A, Hell J (2004) Degassing the “killer lakes” Nyos and Monoun, Cameroon. EOS 85(30):281–288

    Google Scholar 

  33. Hamilton WA (1998) Sulfate-reducing bacteria. Physiology determines their environmental impact. Geomicrobiol J 15:19–28

    Google Scholar 

  34. Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev Environ Sci Technol 26:155–187

    Google Scholar 

  35. Herlihy AT, Mills AL (1985) Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl Environ Microbiol 49:179–186

    Google Scholar 

  36. Jeschke C, Falagán C, Knoeller K, Schultze M, Koschorreck M (2013) No nitrification in lakes below pH 3. Environ Sci Technol 47:24

    Google Scholar 

  37. Johnson DB (1998) Biological abatement of acid mine drainage: the role of acidofilic protozoa and other indigenous microflora. Acidic Mining Lakes, Springer, pp 285–301

    Google Scholar 

  38. Karnachuk OV, Frank YA, Pimenov NV, Yusupov SK, Ivanov MV, Kaksonen AH, Puhakka JA, Lindström EB, Tuovinen OH (2005) Sulfate reduction potential in sediments in the Norilsk mining area, northern Siberia. Geomicrobiol J 22:11–25

    Google Scholar 

  39. Koschorreck M (2008) Microbial sulfate reduction at low pH. FEMS Microbiol Ecol 64:329–342

    Google Scholar 

  40. Koschorreck M, Wendt-Potthoff K, Geller W (2003) Microbial sulfate reduction at low pH in sediments of an acidic lake in Argentina. Environ Sci Technol 37:1159–1162

    Google Scholar 

  41. Kumar RN, McCullough CD, Lund MA (2013) Pit lakes in Australia. In: Geller W, Schultze M, Kleinmann R, Wolkersdorfer C (eds) Acidic pit lakes—the legacy of coal and metal surface mines. Springer, Heidelberg, pp 342–362

    Google Scholar 

  42. Le Pape P, Battaglia-brunet F, Parmentier M, Joulian C, Gassaud C, Fernández-Rojo L, Guigner J-M, Ikogou M, Stetten L, Olivi L, Casiot C, Morin G (2017) Complete removal of arsenic and zinc from a heavily contaminated acid mine drainage via an indigenous SRB consortium. J Hazard Mater 321:764–772

    Google Scholar 

  43. López-García JA, Manteca JI, Prieto AC, Calvo B (1992) Primera aparición en España de cronstedtita, Caracterización estructural. Bol Soc Esp Mineral 15(1):21–25

    Google Scholar 

  44. López-García JA, Oyarzun R, Manteca JI (2010) El distrito minero de La Unión: Plomo, zinc, plata y estaño en la Sierra de Cartagena. In: Lillo J, López I, López JA, Oyarzun R (Eds), Geoguías GEMM (Grupo Estudios en Minería y Medioambiente), Serie Distritos Mineros 3 (brochure downloaded from https://eprints.ucm.es/26229/)

  45. López-Pamo E, Sánchez-España J, Diez M, Santofimia E, Reyes J (2009) Cortas mineras inundadas de la Faja Pirítica: Inventario e hidroquímica. Serie Medio Ambiente 13, Instituto Geológico y Minero de España, Madrid

  46. Manteca JI, Ovejero G (1992) Los yacimientos Zn, Pb, Ag-Fe del distrito minero de La Unión-Cartagena, Bética Oriental (Zn, Pb, Ag-Fe ore deposits of La Unión-Cartagena mining district, eastern Betic Cordillera). In: Martínez-Frías J (ed) García-Guinea J. Recursos minerales de España, CSIC, pp 1085–1101

    Google Scholar 

  47. Moreau JW, Webb RI, Banfield JF (2004) Ultrastructure, aggregation-state, and crystal growth of biogenic nanocrystalline sphalerite and wurtzite. Am Miner 89:950–960

    Google Scholar 

  48. Nancucheo I, Hedrich S, Johnson DB (2012) New microbiological strategies that enable the selective recovery and recycling of metals from acid mine drainage and mine process waters. Miner Mag 76(7):2683–2692

    Google Scholar 

  49. Nancucheo I, Bitencourt JAP, Sahoo PK, Alves JO, Siqueira JO, Oliveira G (2017) Recent developments for remediating acidic mine waters using sulfidogenic bacteria. Biomed Res Int 3:1–17

    Google Scholar 

  50. Nixdorf B, Mischke U, Lebmann D (1998) Chrysophites and chlamydomonas: pioneer colonists in extremely acidic mining lakes (pH < 3) in Lusatia (Germany). Hydrobiol 369(370):315–327

    Google Scholar 

  51. Nordstrom DK (2004) Modeling low-temperature geochemical processes. In: Holland HD, Turekian KK (eds) Treatise on Geochemistry, 2nd edit, vol 5. Surface and Ground Water, Weathering, and Soils. Elsevier Pergamon, Amsterdam, pp 37–72

    Google Scholar 

  52. Oen IS, Fernández JC, Manteca JI (1975) The lead-zinc and associated ores of La Unión, Sierra de Cartagena, Spain. Econ Geol 70:1259–1278

    Google Scholar 

  53. Parkhurst DL, Appelo CAJ (2013) Description of input and examples for PHREEQC version 3—a computer program for speciation, batch-reactions, one-dimensional transport, and inverse geochemical calculations. Groundwater Book 6, Modeling Techniques. USGS, Denver

  54. Pavillon MJ (1969) Les minèralisations plombo-zinciferes de Carthagène (Cordilleres Betiques, Espagne). Miner Deposita 4:368–385

    Google Scholar 

  55. Pester M, Bittner N, Deevong P, Wagner M, Loy A (2010) A ‘rare biosphere’ microorganism contributes to sulfate reduction in a peatland. ISME J 4:1591–1602

    Google Scholar 

  56. Praharaj T, Fortin D (2004) Indicators o microbial sulfate reduction in acidic sulfide-rich mine tailings. Geomicrobiol J 21:457–467

    Google Scholar 

  57. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41(D1):590–596

    Google Scholar 

  58. Ramiro-Garcia J, Hermes GDA, Giatsis C, Sipkema D, Zoetendal EG, Schaap PJ, Smidt H (2018) NG-Tax, a highly accurate and validated pipeline for analysis of 16S rRNA amplicons from complex biomes. F1000 Res 5:1791

    Google Scholar 

  59. Regenspurg S, Brand A, Peiffer S (2004) Formation and stability of schwertmannite in acidic mining lakes. Geochim Cosmochim Ata 68:1185–1197

    Google Scholar 

  60. Robles-Arenas VM, Rodríguez R, García C, Manteca JI, Candela L (2006) Sulfide-mining impacts in the physical environment: Sierra de Cartagena–La Unión (SE Spain) case study. Environ Geol 51:47–64

    Google Scholar 

  61. Rowe OF, Sánchez-España J, Hallberg KB, Johnson DB (2007) Microbial communities and geochemical dynamics in an extremely acidic, metal-rich stream at an abandoned sulfide mine (Huelva, Spain) underpinned by two functional primary production systems. Environ Microbiol 9:1761–1771

    Google Scholar 

  62. Rüffel V, Maar M, Dammbrück MN, Hauroeder B, Neu TR, Meier J (2018) Thermodesulfobium sp. strain 3baa, an acidophilic sulfate reducing bacterium forming biofilms triggered by mineral precipitation: Acidophilic sulfate reducer forming biofilms. Environ Microbiol 20(10):3717–3731

    Google Scholar 

  63. Rütting T, Boeckx Müller C, Klemedtsson L (2011) Assessment of the importance of dissimilatory nitrate reduction to ammonium for the terrestrial nitrogen cycle. Biogeosciences 8:1779–1791

    Google Scholar 

  64. Sánchez-Andrea I, Rodríguez N, Amils R, Sanz JL (2011) Microbial diversity in anaerobic sediments at Rio Tinto, a naturally acidic environment with a high heavy metal content. App Environ Microbiol 77:6085–6093

    Google Scholar 

  65. Sánchez-Andrea I, Rojas-Ojeda P, Amils R, Sanz JL (2012) Screening of anaerobic activities in sediments of an acidic environment: Tinto River. Extremophiles 16(6):829–839

    Google Scholar 

  66. Sánchez-Andrea I, Stams AJM, Amils R, Sanz JL (2013) Enrichment and isolation of acidophilic sulfate-reducing bacteria from Tinto River sediments. Environ Microbiol Rep 5(5):672–678

    Google Scholar 

  67. Sánchez-Andrea I, Sanz JL, Stams AJ (2014) Microbacter margulisiae gen. nov., sp. nov., a propionigenic bacterium isolated from sediments of an acid rock drainage pond. Int J Syst Evol Microbiol 64(12):3936–3942

    Google Scholar 

  68. Sánchez-Andrea I, Stams AJ, Hedrich S, Ňancucheo I, Johnson DB (2015) Desulfosporosinus acididurans sp. nov.: an acidophilic sulfate-reducing bacterium isolated from acidic sediments. Extremophiles 19(1):39–47

    Google Scholar 

  69. Sánchez-España J, Diez M (2008) Geochemical modeling of concentrated mine waters: a comparison of the Pitzer ion-interaction theory with the ion-association model for the study of melanterite solubility in San Telmo mine (Huelva, Spain). In: Stefansson O (ed) Geochemistry research advances. Nova Science, New York, pp 31–55

    Google Scholar 

  70. Sánchez-España J, López Pamo E, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian pyrite belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20–7:1320–1356

    Google Scholar 

  71. Sánchez-España J, López-Pamo E, Santofimia E, Diez-Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287

    Google Scholar 

  72. Sánchez-España J, López-Pamo E, Diez M, Santofimia E (2009) Physico-chemical gradients and meromictic stratification in Cueva de la Mora and other acidic pit lakes of the Iberian pyrite belt. Mine Water Environ 28:15–19

    Google Scholar 

  73. Sánchez-España J, Yusta I, Diez-Ercilla M (2011) Schwertmannite and hydrobasaluminite: a re-evaluation of their solubility and control on the iron and aluminum concentration in acidic pit lakes. Appl Geochem 26:1752–1774

    Google Scholar 

  74. Sánchez-España J, Diez M, Santofimia E (2013) Mine pit lakes of the Iberian pyrite belt: some basic limnological, hydrogeochemical and microbiological considerations. In: Geller W, Schultze M, Kleinmann B, Wolkersdorfer C (eds) Acidic Pit Lakes: The Legacy of Coal and Metal Surface Mines. Springer, Heidelberg, pp 315–342

    Google Scholar 

  75. Sánchez-España J, Diez M, Cerdán FP, Yusta I, Boyce AJ (2014a) Hydrological investigation of a multi-stratified pit lake using radioactive and stable isotopes combined with hydrometric monitoring. J Hydrol 511:494–508

    Google Scholar 

  76. Sánchez-España J, Boehrer B, Yusta I (2014b) Extreme carbon dioxide concentrations in acidic pit lakes provoked by water/rock interaction. Environ Sci Technol 48:4273–4281

    Google Scholar 

  77. Schultze M, Boehrer B, Wendt-Potthoff K, Sánchez-España J, Castendyk D (2017) Meromictic pit lakes: case studies from Spain, Germany and Canada and general aspects of management and modelling. In: Gulati RD, Zadereev AE, Degermendzhi AG (eds) Ecology of Meromictic Lakes, Ecological Studies 228. Springer, New York, pp 235–275

    Google Scholar 

  78. Wendt-Potthoff K (2013) The biology and ecosystems of acidic pit lakes. In: Geller W, Schultze M, Kleinmann B, Wolkersdorfer C (eds) Acidic Pit Lakes: the legacy of coal and metal surface mines. Springer, Heidelberg, pp 107–186

    Google Scholar 

  79. Wendt-Potthoff K, Koschorreck M, Diez M, Sánchez-España J (2012) High microbial activity in a nutrient-rich, acidic mine pit lake. Limnologica 42–3:175–188

    Google Scholar 

  80. Wetzel RG (2001) Limnology—lake and river ecosystems, 3rd edn. Elsevier, Amsterdam

    Google Scholar 

  81. Widdel F (1988) Microbiology and ecology of sulfate- and sulfur-reducing bacteria. In: Zehnder A (ed) Biology of Anaerobic Microorganisms. Wiley, New York City, pp 469–585

    Google Scholar 

  82. Yilmaz P, Parfrey LW, Yarza P, Gerken J, Pruesse E, Quast C, Glöckner FO (2014) The SILVA and “all-species Living Tree Project (LTP)” taxonomic frameworks. Nucl Acid Res 42(D1):643–648

    Google Scholar 

  83. Zurek R, Diakiv V, Szarek-Gwiazda E, Kosiba J, Wojtal AZ (2018) Unique pit lake created in an opencast potassium salt mine: (Dombrovska pit lake in Kalush, Ukraine). Mine Water Environ 37:456–469

    Google Scholar 

Download references

Acknowledgements

This study was funded by the Spanish Ministry of Economy, Industry and Competitiveness through the National Research Agency (FEDER funds, Grant CGL2016-74984-R). We thank our colleagues from the IGME laboratories (Jesús Reyes, Ana Nieto, Mercedes Castillo, Maite Andrés) for chemical analyses of waters and sediments. We thank the personnel at the SGIker facilities of the Basque Country University (Javier Sanguesa, Ana Martínez-Amesti, and Sergio Fernández) for their help during mineralogical characterization. ISA was funded by the Netherlands Organisation for Scientific Research (NWO) through SIAM Gravitation grant 024.002.002. We thank Iame Alves Guedes for processing the filter samples, and two anonymous reviewers for their helpful suggestions on an earlier version of this manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez-España.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sánchez-España, J., Yusta, I., Ilin, A. et al. Microbial Geochemistry of the Acidic Saline Pit Lake of Brunita Mine (La Unión, SE Spain). Mine Water Environ 39, 535–555 (2020). https://doi.org/10.1007/s10230-020-00655-0

Download citation

Keywords

  • Acidic mine pit lakes
  • Metal pollution
  • Bacterial sulfate reduction
  • Natural attenuation