Skip to main content
Log in

Thermal Infrared Imaging to Identify Surface Mines

Bilder im thermischen Infrarot für die Identifizierung von Tagebauen

热红外成像方法识别露天矿

Imágenes infrarrojas térmicas para identificar minas de superficie

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Mines show spectral resemblance with other landscape features; hence, their identification with satellite imagery can be difficult. To address this, land surface temperature (LST) derived from thermal infrared images of satellite remote sensing data was used to differentiate mines. Higher surface temperatures were observed for mined land than other classes (built-up and fallow land) in nighttime data. This indicates that the increased surface temperature of the other classes is due to solar heating while geothermal and pyrite oxidation contribute warmth at mined sites. Nighttime LST can be used to locate mines and their spatial extent despite the low spatial resolution of satellite data. It also confirms a mine’s heat island phenomenon due to geothermal energy.

Zusammenfassung

Tagebaue zeigen spektrale Ähnlichkeiten mit anderen Landschaftselementen. Daher kann die Identifizierung von Tagebauen auf Satellitenbildern schwierig sein. Um dieses Problem zu lösen, wurde die Landoberflächentemperatur benutzt, abgeleitet aus Satellitenbildern im thermischen Infrarot, um Tagebaue von anderen Landschaftselementen zu unterscheiden. Für Tagebaue wurden im Vergleich zu anderen Landschaftselementen (bebaute und Brachflächen) höhere Oberflächentemperaturen in den Nachtstunden beobachtet. Das zeigt, dass der geothermische Wärmefluss und die Pyritoxidation zu erhöhten Oberflächentemperaturen für Tagebaue beitragen während für andere Landschaftselemente die Sonneneinstrahlung am Tag allein entscheidend ist. Nächtliche Landoberflächentemperaturen können daher für die Lokalisierung und die Bestimmung der räumlichen Ausdehnung von Tagebauen verwendet werden, trotz der geringen Auflösung von Satellitenaufnahmen. Außerdem wird eine Wärmeanomalie von Tagebauen aufgrund von geothermischer Energie bestätigt.

抽象

露天矿的光谱特征与其它景观相似,难以通过卫星图像识别。为解决该问题,利用卫星遥感数据的热红外图像获取地表温度(LST)来识别露天矿。在夜晚,已开采矿区比其它类型(建设用地和休耕地)地表温度更高。该现象表明:其它类型地表温度升高是由太阳照射引起,而已开采矿区地表温度升高是由地热和黄铁矿氧化引起。虽然卫星数据的空间分辨率低,但是夜晚地表温度(LST)能够定位已开采矿区及空间扩展。这也证实了已开采矿区热岛现象是由地热引起。

Resumen

Las minas muestran una semejanza espectral con otras características del paisaje por lo que su identificación con imágenes satelitales puede ser dificultosa. Para abordar esto, se utilizó la temperatura de la superficie terrestre (LST) derivada de imágenes infrarrojas térmicas de datos de sensores remotos satelitales para diferenciar las minas. Las tierras afectadas por la minería presentaron temperaturas superficiales más altas que otras zonas (tierras edificadas y en barbecho) en los datos nocturnos. Esto indica que el aumento de la temperatura de la superficie de las otras clases se debe al calentamiento solar mientras que la energía geotérmica y la oxidación de pirita contribuyen al calor en los sitios explotados por la minería. La LST nocturna se puede usar para localizar minas y su extensión espacial a pesar de la baja resolución espacial de los datos satelitales. También confirma el fenómeno de isla de calor de una mina debido a la energía geotérmica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Al-Habaibeh A, Athresh AP, Parker K (2018) Performance analysis of using mine water from an abandoned coal mine for heating of buildings using an open loop based single shaft GSHP system. Appl Energy 211:393–402

    Article  Google Scholar 

  • Artis DA, Carnahan WH (1982) Survey of emissivity variability in thermography of urban areas. Remote Sens Environ 12:313–329

    Article  Google Scholar 

  • Banks D, Athresh A, Al-Habaibeh A, Burnside N (2019) Water from abandoned mines as a heat source: practical experiences of open- and closed-loop strategies, United Kingdom. Sustain Water Res Manag 5:29–50

    Article  Google Scholar 

  • Bao T, Liu Z (2019) Thermohaline stratification modeling in mine water via double-diffusive convection for geothermal energy recovery from flooded mines. Appl Energy 237:566–580

    Article  Google Scholar 

  • Bao T, Meldrum J, Green C, Vitton S, Liu Z, Bird K (2019) Geothermal energy recovery from deep flooded copper mines for heating. Energy Convers Manag 183:604–616

    Article  Google Scholar 

  • Clauser C (2006) Geothermal energy. Landolt-Bo ¨rnstein, group VIII: advanced materials and technologies. In: Heinloth K (ed) Renewable energies, vol 3(C). Springer, Heidelberg, pp 493–604

    Chapter  Google Scholar 

  • Deng Y, Wang S, Bai X, Tian Y, Wu L, Xiao J, Chen F, Qian Q (2018) Relationship among land surface temperature and LUCC, NDVI in typical karst area. Sci Rep 8:641

    Article  Google Scholar 

  • Hall A, Scott JA, Shang H (2011) Geothermal energy recovery from underground mines. Renew Sustain Energy Rev 15:916–924

    Article  Google Scholar 

  • Harries JR, Ritchie AIM (1981) The use of temperature profiles to estimate the pyritic oxidation rate in a waste rock dump from an opencut mine. Water Air Soil Pollut 15:405–423

    Article  Google Scholar 

  • Hudson-Edwards K (2016) Tackling mine wastes. Science 352(6283):288–290

    Article  Google Scholar 

  • Li S, Chen X (2014) A new bare-soil index for rapid mapping developing areas using LANDSAT 8 data. Int Arc Photogramm Remote Sens Spat Inf Sci 40(4):139–144

    Article  Google Scholar 

  • Loredo C, Ordóñez A, Garcia-Ordiales E, Álvarez R, Roqueñi N, Cienfuegos P, Peña A, Burnside NM (2017) Hydrochemical characterization of a mine water geothermal energy resource in NW Spain. Sci Total Environ 576:59–69

    Article  Google Scholar 

  • Lund JW (2007) Characteristics, development and utilization of geothermal resources. Geo Heat Cent Q Bull 28:1–9

    Google Scholar 

  • Malolepszy Z (2003) Low temperature, man-made geothermal reservoirs in abandoned workings of underground mines. In: Proc, 28th Workshop on Geothermal Reservoir Engineering, Stanford, California, pp 259–265

  • McFeeters SK (1996) The use of the normalized difference water index (NDWI) in the delineation of open water features. Int J Remote Sens 17:1425–1432

    Article  Google Scholar 

  • Popiel CO, Wojtkowiak J, Biernacka B (2001) Measurements of temperature distribution in ground. Exp Therm Fluid Sci 25:301–309

    Article  Google Scholar 

  • Rathore CS, Wright R (1993) Monitoring environmental impacts of surface coal mining. Int J Remote Sens 14(6):1021–1042

    Article  Google Scholar 

  • Reichart G, Vaute L, Collon-Drouaillet P, Buès MA (2011) Modelling heat and salinity related convective processes in deep mining flooded wells. In: Proc, 11th International Mine Water Assoc Congress, IMWA, Aachen, Germany, pp 183–187

  • Rouse JW, Haas RH, Schell JA, Deering DW (1973) Monitoring vegetation systems in the Great Plains with ERTS. Proc 3rd ERTS Symp NASA 351I:309–317

    Google Scholar 

  • Verhoeven R, Willems E, Harcouët-Menou V, De Boever E, Hiddes L, Veld PO, Demollin E (2014) Minewater 2.0 project in Heerlen, The Netherlands: transformation of a geothermal mine water pilot project into a full scale hybrid sustainable energy infrastructure for heating and cooling. Energy Procedia 46:58–67

    Article  Google Scholar 

  • Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–15

    Article  Google Scholar 

  • Yang G, Pu R, Zhao C, Huang W, Wang J (2011) Estimation of subpixel land surface temperature using an endmember index based technique: a case examination on ASTER and MODIS temperature products over a heterogeneous area. Remote Sens Environ 115:1202–1219

    Article  Google Scholar 

  • Zha Y, Gao J, Ni S (2003) Use of normalized difference built-up index in automatically mapping urban areas from TM imagery. Int J Remote Sens 24:583–594

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anita Punia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, P.K., Punia, A. Thermal Infrared Imaging to Identify Surface Mines. Mine Water Environ 38, 700–704 (2019). https://doi.org/10.1007/s10230-019-00631-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-019-00631-3

Keywords

Navigation