Advertisement

Hydraulic Conductivity of Geosynthetic Clay Liners Permeated with Acid Mine Drainage

  • Bao WangEmail author
  • Xingling Dong
  • Bin Chen
  • Tongtong Dou
Technical Article
  • 36 Downloads

Abstract

We investigated the potential use of two geosynthetic clay liners (GCLs) as basal liners for acid mine drainage (AMD) from a coal gangue impoundment. One contained natural sodium bentonite (GCL-N), while the other contained sodium-activated bentonite (GCL-S). Chemical compatibility and the effects of effective stress and type of bentonite were evaluated. The test results showed that permeation with a synthesized AMD caused the hydraulic conductivity of the GCL-N and GCL-S to increase by 33 and 104 times, respectively, at an effective stress of 10 kPa. Under an effective stress of 50 kPa, the hydraulic conductivity of the GCL-N and GCL-S permeated with AMD was 1.1 and 6.6 times higher, respectively, than the values based on permeation with distilled water. However, when the effective stress was increased to 200 kPa, the AMD had no negative effect on hydraulic performance. The difference in hydraulic conductivity because of the type of bentonite was only observed at effective stresses of 10 and 50 kPa, with the GCL-N consistently having less hydraulic conductivity than the GCL-S. Thus, the detrimental effects of AMD permeation and low quality bentonite can be countered by applying high effective stress to the GCLs. Both GCLs types may be suitable as effective basal liners for coal gangue impoundments where relatively high stress can be applied.

Keywords

Coal gangue Bentonite Effective stress Swell 

Durchlässigkeit geosynthetischer Tondichtungsbahnen bei saurem Grubenwasser

Zusammenfassung

Im Zuge der Studie wurde das Potential zweier geosynthetischer Tondichtungsbahnen als Basisdichtung für saure Grubenwässer aus Kohleabraumhalden untersucht. Eine enthält natürlichen Natriumbentonit (GCL-N) während die Andere Natrium-Aktivbentonit (GCL-S) enthält. Chemische Verträglichkeit und die Auswirkungen von wirksamem Druck und Bentonittyp wurden bewertet. Die Testergebnisse zeigen, dass die Permeation mit synthetischem Grubenwasser bei wirksamem Druck von 10 kPa die Durchlässigkeit von GCL-N und GCL-S um das 33 bzw. 104-fache erhöht. Bei wirksamem Druck von 50 kPa und Permeation mit saurem Grubenwasser war die hydraulische Leitfähigkeit von GCL-N und GCL-S im Vergleich zur Permeation mit destilliertem Wasser um das 1,1 und 6,6-fache erhöht. Bei einer Erhöhung des wirksamen Drucks auf 200 kPa hatte das saure Grubenwasser jedoch keine negativen Auswirkungen auf die hydraulische Leistung. Ein Unterschied in der Durchlässigkeit aufgrund des Bentonittyps wurde nur bei wirksamem Druck zwischen 10 und 50 kPa beobachtet, wobei der GCL-N stets eine geringere Durchlässigkeit aufwies als der GCL-S. Die vorliegende Studie zeigt, dass die schädliche Wirkung der Permeation sauren Grubenwassers und minderwertigen Bentonits durch Aufwendung hohen Drucks auf die geosynthetische Tondichtungsbahn entgegengewirkt werden kann. Beide Tondichtungsbahntypen sind als Basisdichtung für Kohleabraum geeignet insofern relativ hoher Druck darauf aufgewendet werden kann.

Conductividad hidráulica de revestimientos de arcilla geosintéticos permeadas con drenaje ácido de mina

Resumen

Investigamos el uso potencial de dos revestimientos de arcilla geosintéticos (GCL) como revestimientos basales para el drenaje ácido de minas (AMD) de un depósito de ganga de carbón. Uno contenía bentonita de sodio natural (GCL-N) mientras que el otro contenía bentonita activada por sodio (GCL-S). Se evaluaron la compatibilidad química y los efectos del estrés efectivo y el tipo de bentonita. Los resultados de la prueba mostraron que la permeación con una AMD sintética hizo que la conductividad hidráulica del GCL-N y GCL-S aumentara en 33 y 104 veces, respectivamente, a una tensión efectiva de 10 kPa. Bajo una tensión efectiva de 50 kPa, la conductividad hidráulica del GCL-N y GCL-S permeada con AMD fue 1,1 y 6,6 veces mayor, respectivamente, que los valores basados ​​en la permeación con agua destilada. Sin embargo, cuando la tensión efectiva se incrementó a 200 kPa, el AMD no tuvo un efecto negativo en el rendimiento hidráulico. La diferencia en la conductividad hidráulica debido al tipo de bentonita solo se observó con tensiones efectivas de 10 y 50 kPa, con el GCL-N teniendo consistentemente menos conductividad hidráulica que el GCL-S. Este estudio demostró que los efectos perjudiciales de la permeación de AMD y la bentonita de baja calidad se pueden contrarrestar mediante la aplicación de un alto nivel de estrés efectivo en los GCL. Ambos tipos de GCL pueden ser adecuados como revestimientos basales efectivos para embalses de ganga de carbón donde se les puede aplicar un estrés relativamente alto.

人工合成粘土砌衬对酸性矿井废水的导水性

摘要

研究了两种人工合成粘土砌衬(GCL)用作煤矿矸石堆底部酸性排水(AMD砌衬的可行性。一种是天然钠膨润土(GCL-N),另一种是含钠活性膨润土(GCL-S)。研究了它们化学性能、有效应力和膨润土类型对膨润土透水性的影响。试验结果表明,在10 kPa有效应力作用下,GCL-N和GCL-S膨润土对人工合成AMD的导水率分别提高33倍和104倍。在50kpa有效应力作用下,GCL-N和GCL-S对AMD的导水率分别比蒸馏水高1.1倍和6.6倍。然而,当有效应力增加到200kpa时,已经观测不到AMD本身对膨润土的水力学性能的负面影响。只有在10 kPa和50 kPa有效应力下才能观察到膨润土类型对膨润土导水率的影响,GCL-N导水率始终低于GCL-S。 因此,酸性矿山废水(AMD)渗透性和劣质膨润土的不利影响可以通过向人工合成粘土砌衬施加有效应力抵消。这两种类型工合成粘土砌衬适于较高应力煤矸石堆(库)的底部砌衬。

Notes

Acknowledgements

Financial support for this study was provided by the National Natural Science Foundation of China (NSFC), under Grant 41602291. The opinions expressed in this paper are solely those of the authors and are not necessarily consistent with the policies or opinions of the NSFC.

References

  1. Alther GR (1987) The qualifications of bentonite as a soil sealant. Eng Geol 23:177–191CrossRefGoogle Scholar
  2. China National Coal Association (2014) Annual report on China coal industry reform and developmentGoogle Scholar
  3. ASTM I (2006) Standard test method for swell index of clay mineral component of geosynthetic clay liners. ASTM D 5890-06. ASTM International, West ConshohockenGoogle Scholar
  4. ASTM I (2010) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter. ASTM 5084-10. ASTM International, West ConshohockenGoogle Scholar
  5. ASTM I (2012) Standard test method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions. ASTM D 6766-12. ASTM International, West ConshohockenGoogle Scholar
  6. Benson CH, Wang X, Gassner FW, Foo DCF (2008) Hydraulic conductivity of two geosynthetic clay liners permeated with an alumina residue leachate. In: Proceedings of the 1st Pan American geosynthetics conference and exhibition, Cancun, pp 94–101Google Scholar
  7. Benson CH, Ören AH, Gates WP (2010) Hydraulic conductivity of two geosynthetic clay liners permeated with a hyperalkaline solution. Geotext Geomembr 28:206–218CrossRefGoogle Scholar
  8. Bouazza A (2002) Geosynthetic clay liner. Geotext Geomembr 20:3–17CrossRefGoogle Scholar
  9. Bradshaw S, Benson C (2014) Effect of municipal solid waste leachate on hydraulic conductivity and exchange complex of geosynthetic clay liners. J Geotech Geoenviron 140:1–17CrossRefGoogle Scholar
  10. Bradshaw SL, Benson CH, Rauen TL (2016) Hydraulic conductivity of geosynthetic clay liners to recirculated municipal solid waste leachates. J Geotech Geoenviron 142:4015074CrossRefGoogle Scholar
  11. Dong X, Dong S, Wang B, Jin D (2018) Hydraulic conductivity of geosynthetic clay liners to loess leachate. J China Coal Soc 43:228–235 (in Chinese) Google Scholar
  12. Egloffstein TA (2001) Natural bentonites-influence of the ion exchange and partial desiccation on permeability and self-healing capacity of bentonites used in GCLs. Geotext Geomembr 19:427–444CrossRefGoogle Scholar
  13. Fourie AB, Bouazza A, Lupo J, Abrão P (2010) Improving the performance of mining infrastructure through the judicious use of geosynthetics. In: Proceedings of the 9th international conference on geosynthetics, Guaruja, Brazil, pp 193–219Google Scholar
  14. Guyonnet D, Touze-Foltz N, Norotte V, Pothier C, Didier G, Gailhanou H, Blanc P, Warmont F (2009) Performance-based indicators for controlling geosynthetic clay liners in landfill applications. Geotext Geomembr 27:321–331CrossRefGoogle Scholar
  15. Jo HY, Katsumi T, Benson CH, Edil TB (2001) Hydraulic conductivity and swelling of nonprehydrated GCLs permeated with single-species salt solutions. J Geotech Geoenviron 127:557–567CrossRefGoogle Scholar
  16. Kang JB, Shackelford CD (2009) Consolidation of a geosynthetic clay liner under isotropic states of stress. J Geotech Geoenviron 136:253–259CrossRefGoogle Scholar
  17. Kashir M, Yanful EK (2001) Hydraulic conductivity of bentonite permeated with acid mine drainage. Can Geotech J 38:1034–1048CrossRefGoogle Scholar
  18. Katsumi T, Ishimori H, Onikata M, Fukagawa R (2008) Long-term barrier performance of modified bentonite materials against sodium and calcium permeant solutions. Geotext Geomembr 26:14–30CrossRefGoogle Scholar
  19. Kolstad D, Benson C, Edil T (2004) Hydraulic conductivity and swell of nonprehydrated geosynthetic clay liners permeated with multispecies inorganic solutions. J Geotech Geoenviron 130:1236–1249CrossRefGoogle Scholar
  20. Lee J, Shackelford CD (2005) Impact of bentonite quality on hydraulic conductivity of geosynthetic clay liners. J Geotech Geoenviron 131:64–77CrossRefGoogle Scholar
  21. Lee J, Shackelford CD, Benson CH, Jo H, Edil TB (2005) Correlating index properties and hydraulic conductivity of geosynthetic clay liners. J Geotech Geoenviron 131:1319–1329CrossRefGoogle Scholar
  22. Liu Y, Gates WP, Bouazza A (2013) Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotext Geomembr 36:71–80CrossRefGoogle Scholar
  23. Liu Y, Bouazza A, Gates WP, Rowe RK (2015) Hydraulic performance of geosynthetic clay liners to sulfuric acid solutions. Geotext Geomembr 43:14–23CrossRefGoogle Scholar
  24. Norotte V, Didier G, Gaucher D (2004) Evolution of GCL hydraulic performance during contact with landfill leachate. ASTM STP 1456. ASTM International, West ConshohockenGoogle Scholar
  25. Petrov RJ, Rowe RK (1997) Geosynthetic clay liner (GCL)-chemical compatibility by hydraulic conductivity testing and factors impacting its performance. Can Geotech J 34:863–885CrossRefGoogle Scholar
  26. Price P, Wright IA (2016) Water quality impact from the discharge of coal mine wastes to receiving streams: comparison of impacts from an active mine with a closed mine. Water Air Soil Pollut 227:155CrossRefGoogle Scholar
  27. Qureshi A, Maurice C, Öhlander B (2016) Potential of coal mine waste rock for generating acid mine drainage. J Geochem Explor 160:44–54CrossRefGoogle Scholar
  28. Rauen T, Benson C (2008) Hydraulic conductivity of a geosynthetic clay liner permeated with leachate from a landfill with leachate recirculation. In: Proceedings of the 1st Pan American geosynthetics conference and exhibition, Cancun, Mexico, pp 76–83Google Scholar
  29. Rosin-Paumier S, Touze-Foltz N (2012) Hydraulic and chemical evolution of GCLs during filter press and oedopermeametric tests performed with real leachate. Geotext Geomembr 33:15–24CrossRefGoogle Scholar
  30. Rubl JL, Daniel DE (1997) Geosynthetic clay liners permeated with chemical solutions and leachates. J Geotech Geoenviron 123:369–381CrossRefGoogle Scholar
  31. Sarabian T, Rayhani MT (2013) Hydration of geosynthetic clay liners from clay subsoil under simulated field conditions. Waste Manag 33:67–73CrossRefGoogle Scholar
  32. Scalia J, Benson CH, Bohnhoff GL, Edil TB, Shackelford CD (2014) Long-term hydraulic conductivity of a bentonite–polymer composite permeated with aggressive inorganic solutions. J Geotech Geoenviron 140:4013025CrossRefGoogle Scholar
  33. Shackelford CD, Benson CH, Katumi T, Edil TB, Lin L (2000) Evaluating the hydraulic conductivity of GCLs permeated with non-standard liquids. Geotext Geomembr 18:133–161CrossRefGoogle Scholar
  34. Shackelford CD, Sevick GW, Eykholt GR (2010) Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotext Geomembr 28:149–162CrossRefGoogle Scholar
  35. Shan H, Lai Y (2002) Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotext Geomembr 20:19–38CrossRefGoogle Scholar
  36. Sracek O, Gzyl G, Frolik A, Kubica J, Bzowski Z, Gwoździewicz M, Kura K (2010) Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environ Monit Assess 165:233–254CrossRefGoogle Scholar
  37. Thiel RS, Criley K (2005) Hydraulic conductivity of partially prehydrated GCLs under high effective confining stresses for three real leachates. In: Proceedings of the geo-frontiers congress, Austin, pp 1–11Google Scholar
  38. Wu H, Wen Q, Hu L, Gong M, Tang Z (2017) Feasibility study on the application of coal gangue as landfill liner material. Waste Manag 63:161–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Environmental and Municipal EngineeringXi’an University of Architecture and TechnologyXi’anChina
  2. 2.Xi’an Research Institute Co. Ltd.China Coal Technology and Engineering Group Corp.Xi’anChina
  3. 3.Department of Civil EngineeringXi’an University of Architecture and TechnologyXi’anChina

Personalised recommendations