An Overview of Priority Pollutants in Selected Coal Mine Discharges in Europe

  • Philippe Gombert
  • Ondra Sracek
  • Nikolaos Koukouzas
  • Grzegorz Gzyl
  • Susana Tuñon Valladares
  • Robert Frączek
  • Christoph Klinger
  • Arkadiusz Bauerek
  • Juan Enrique Álvarez Areces
  • Sinead Chamberlain
  • Krzysztof Paw
  • Łukasz Pierzchała
Technical Article

Abstract

Coal mine discharges in several European countries were investigated as part of the European Commission’s MANAGER project. The emphasis of the project was identification of priority pollutants and potential remedial approaches. The main identified priority pollutants were sulphate (all countries) and iron (all countries except Greece). High concentrations of chloride (particularly in Germany and Poland) were associated with discharge of saline mine waters linked to the presence of fossil sea water; these mine waters also had high boron concentrations, in contrast to chloride-rich waters in UK that are linked to recent sea water inflow. Concentrations of trace metals vary among countries, but radium is an important contaminant in barium-rich waters with low sulphate concentrations, essentially in Poland. Concentrations of trace metals and metalloids were generally low because of their relative scarcity in coal strata and adsorption onto ferric oxides and hydroxides, but they still often exceeded the environmental quality thresholds.

Keywords

Coal basin Pollution Database Emission limits 

Ein Überblick zu prioritären Schadstoffen in ausgewählten Grubenwasseraustritten europäischer Kohlegruben

Zusammenfassung

Rahmen des von der Europäischen Kommission geförderten Projektes MANAGER wurden Grubenwasseraustritte von Kohlegruben verschiedener europäischer Staaten untersucht. Das Projekt zielte auf die Ausweisung prioritären Schadstoffe und die Ableitung von Sanierungsansätzen. Hauptschadstoffe sind Sulfat (sämtliche Staaten) und Eisen (alle Staaten außer Griechenland). Hohe Chloridkonzentrationen (insbesondere in Deutschland und Polen) haben ihre Ursache in der Freisetzung salinarer Wässer, die auf fossiles Meerwasser zurückgehen. Diese Wässer weisen ebenfalls hohe Bor-Konzentrationen auf, während im Gegensatz dazu chloridreiche Wässer in Großbritannien mit dem Zufluss rezenten Meerwassers in Verbindung stehen. Die Spurenmetallkonzentrationen variieren zwischen den einzelnen Staaten, während Radium ein wichtiger Schadstoff in bariumreichen, sulfatarmen Wässern ist, insbesondere in Polen. Die Konzentrationen von Spurenmetallen und Metalloiden sind üblicherweise niedrig aufgrund ihrer relativen Verarmung in den Kohlen bzw. ihrer Adsorption an Eisenoxide und -hydroxide. Da jedoch die UQN sehr niedrig sind werden diese dennoch häufig überschritten.

Una visión general de los principales contaminantes en las descargas provenientes de minas de carbón seleccionadas en Europa

Resumen

Dentro del marco del proyecto europeo MANAGER se han investigados las descargas de aguas residuales de minas de carbón de diferentes países europeos. El principal objetivo del proyecto consistía en la identificación de los principales contaminantes y en la propuesta de diferentes métodos de remediación. Los principales contaminantes identificados son sulfato (en todos los países) y hierro (en todos los países excepto Grecia). Las altas concentraciones de cloruro (principalmente en Alemania y Polonia) están asociadas con la descarga de aguas salinas desde la mina, vinculadas con la presencia de agua de mar fósil: estas aguas de mina también tienen altas concentraciones de boro, mientras que, por el contrario, las aguas ricas en cloruro en el Reino Unido están vinculadas a la entrada reciente de agua de mar. Las concentraciones de trazas de diferentes metales varían entre países, pero el radio es un importante contaminante en aguas ricas en bario con bajas concentraciones de sulfato, esencialmente en Polonia. Las concentraciones trazas de metales y metaloides son generalmente bajas debido a su escasez relativa en el mineral de carbón y a su adsorción sobre óxidos e hidróxidos férricos, pero como los EQS son muy bajos, a menudo se superan estos umbrales.

欧洲煤矿废水优先处理污染物综述

抽象

欧洲煤矿废水优先处理污染物综述依托欧盟MANAGER项目研究了几个欧洲国家的煤矿废水特征。项目旨在识别煤矿废水需要优先处理的污染物并提出治理方案。识别出的主要优先处理污染物为硫酸盐(所有国家)和铁(除希腊外所有国家)。高浓度氯化物(尤其在德国和波兰)多源于古海洋卤水且硼浓度较高;而英国的高氯化物特征则与矿井的现代海洋水充水相关。几个国家矿井水的微量金属元素含量变化较大;尤其在波兰,镭是高钡且低硫酸盐煤矿废水的重要污染物。由于含量少以及铁氧化物和氢氧化物的吸附作用,废水中微量金属和类金属浓度普遍较低;但是这些元素的环境质量标准(EQS)也低,因此它们的浓度也常超过标准阈值。

Notes

Acknowledgements

This paper was issued from the research project MANAGER (Management of mine water discharges to mitigate environmental risks for post-mining period). The authors thank the Research Fund for Coal and Steel (RFCS) of the European Commission for helping to fund this project (RFCR-CT-2013-00005).

References

  1. Appelo C, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, RotterdamCrossRefGoogle Scholar
  2. Banks D, Frolik A, Gzyl G, Rogoz M (2010) Modeling and monitoring of mine water rebound in an abandoned coal mine complex: Siersza Mine, Upper Silesian Coal Basin, Poland. Hydrogeol J 18:519–534CrossRefGoogle Scholar
  3. Bauerek A, Bebek M, Sracek O, Smieja-Król B (2013) Chemical composition of surface runoff from flotation wastes of Zn–Pb ore formation of the Mississippi Valley-type, Olkusz, southern Poland. J Geochem Explor 132:54–62CrossRefGoogle Scholar
  4. Bauerek A, Bebek M, Drobek L (2014) The concept of the pre-treatment of water runoff generated on mine waste pile of ZG Janina in Libiaz. Central Mining Institute, Katowice (unpubl) Google Scholar
  5. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Lollar BS (ed) Environmental geochemistry, treatise on geochemistry, vol 9. Elsevier, Amsterdam, pp 149–204CrossRefGoogle Scholar
  6. Bouzenot P, Guise Y, Noirel JF, Prince M, Fabriol R, Foucher JL, Testard J, Vassal P, Goetz D, Ledoux E (2010) Post-mining in France. BRGM Publications, Geoscience Issues Collection, OrléansGoogle Scholar
  7. Chalupnik S, Wysocka M (2008) Radium removal from mine waters in underground treatment installations. J Environ Radioactiv 99(10):1548–1552CrossRefGoogle Scholar
  8. Cravotta CA (2008a) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 1: constituent concentrations and correlations. Appl Geochem 23:166–202CrossRefGoogle Scholar
  9. Cravotta CA (2008b) Dissolved metals and associated constituents in abandoned coal-mine discharges, Pennsylvania, USA. Part 2: geochemical controls on constituent concentrations. Appl Geochem 23:203–226CrossRefGoogle Scholar
  10. Cravotta CAI, Brady KBC (2015) Priority pollutants and associated constituents in untreated and treated discharges from coal mining or processing facilities in Pennsylvania, USA. Appl Geochem 62:109–130Google Scholar
  11. Crooks J, Thorn P (2016) A sustainable approach to managing the treatment of mine waters associated with historic mining. In: Drebenstedt C, Paul M (eds) Proceedings of IMWA 2016—mining meets water—conflicts and solutions. TU Bergakademie, Freiberg, pp 1303–1309Google Scholar
  12. Fabriol R (2005) La gestion de l’eau des mines en phase post-extractive. Géosciences 2:66–71Google Scholar
  13. Fandos P, Rodríguez F, Gutiérrez AM, Álvarez JJ (2004) El yacimiento de HUNOSA en la Cuenca Carbonífera Central Asturiana. Informe inédito, Servicios de Geología del Caudal y del Nalón, OviedoGoogle Scholar
  14. Fischer P (2015) Konzept zur langfristigen Optimierung der Grubenwasserhaltung im Ruhrrevier der RAG Aktiengesellschaft—Proc Congress NACHBergbauzeit in NRW, Grubenwasserkonzept für das Ruhrrevier. TFH Georg Agricola, BochumGoogle Scholar
  15. GUS (2015) Ochrona środowiska. Warszawa, Główny Urząd Statystyczny. Environmental protection, Warsaw Central Statistical Office of Poland, PolandGoogle Scholar
  16. Gzyl G, Banks D (2007) Verification of the “first flush” phenomenon in mine water from coal mines in the Upper Silesian Coal Basin, Poland. J Contam Hydrol 92:66–86CrossRefGoogle Scholar
  17. Janson E, Gzyl G, Banks D (2009) The occurrence and quality of mine water in the Upper Silesian Coal Basin, Poland. Mine Water Environ 28:232–244CrossRefGoogle Scholar
  18. Kopřiva A, Zeman J, Sracek O (2005) High arsenic concentrations in mining waters at Kank, Czech Republic. In: Bundschuh J, Bhattacharya P, Chandrasekharam (eds) Natural arsenic in groundwater: occurrence, remediation and management. AA Balkema Publ, Amsterdam, pp 49–56Google Scholar
  19. Koukouzas C, Koukouzas N (1995) Coals of Greece: distribution, quality and reserves,, Special Publ vol 82. Geological Society, London, pp 171–180Google Scholar
  20. Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle RiverGoogle Scholar
  21. Lawrence PJ (2015) The Coal Authority annual report and accounts 2014–2015, LondonGoogle Scholar
  22. Martos E, Álvarez CJ, Cordero C, Ordoñez A, Meléndez M, Garzón B, Loredo J (2007) Proc. XII Congreso Internacional de Energía y Recursos Minerales, OviedoGoogle Scholar
  23. Martos de la Torre E, Meléndez Asensio M, Fernández Mairlot I, Gaitto Piris M, Canto Toimil N, Cordero Escosura C, Álvarez Rodríguez C, Loredo J, Fernández L (2008) Mapa hidrogeológico del entorno minero Turón-Aller (Asturias, España). In: Fernández JA, Loredo J, Fernández L, Pernía JM (eds) Investigación y gestión de los recursos del subsuelo. Libro homenaje al Profesor Fernando Pendás. IGME, pp 631–645Google Scholar
  24. Motyka J, Postawa A (2000) Influence of contaminated Vistula River water on the groundwater entering the Zakrzowek limestone quarry, Cracow region, Poland. Environ Earth Sci 39(3–4):398–404Google Scholar
  25. Ojeda G (1985) Asturias en la industrialización española, 1833–1907. Siglo XXI de España Editores, MadridGoogle Scholar
  26. Pendás F, Loredo J (2006) El agua en los procesos de cierre de minas en Asturias. In: Proc. of Reunión Científico-Técnica “Gestión del agua en los procesos de cierre de minas”. ETS de Minas, Univ de OviedoGoogle Scholar
  27. Pluta I, Zuber A (1995) Origin of brines in the Upper Silesian Coal Basin (Poland) inferred from stable isotope and chemical data. Appl Geochem 10:447–460CrossRefGoogle Scholar
  28. Ravenscroft P, Brammer H, Richards K (2009) Arsenic pollution. A global synthesis. Wiley-Blackwell, HobokenCrossRefGoogle Scholar
  29. Rozkowski A (1993) Impact of mining on groundwater chemistry in the Upper Silesian Coal Basin (Poland). Mine Water Environ 12:95–106Google Scholar
  30. Sracek O, Gzyl G, Frolik A, Kubica J, Bzowski Z, Gwozdziewicz M, Kura K (2010) Evaluation of the impacts of mine drainage from a coal waste pile on the surrounding environment at Smolnica, southern Poland. Environ Monit Assess 165:233–254CrossRefGoogle Scholar
  31. Sracek O, Filip J, Mihaljevič M, Kříbek B, Majer V, Veselovský F (2011) Attenuation of dissolved metals in neutral mine drainage in the Zambian copper belt. Environ Monit Assess 172:287–299CrossRefGoogle Scholar
  32. Szczepańska J, Twardowska I (1999) Distribution and environmental impact of coal-mining wastes in Upper Silesia, Poland. Environ Geol 38(3):249–258CrossRefGoogle Scholar
  33. Vesper DJ, Roy M, Rhoads CJ (2008) Selenium distribution and mode of occurrence in the Kanawha formation, southern West Virginia, USA. Int J Coal Geol 73:237–249CrossRefGoogle Scholar
  34. Wolkersdorfer C, Bowell R (2004) Contemporary reviews of mine water studies in Europe, Part 1. Mine Water Environ 23:162–182CrossRefGoogle Scholar
  35. Younger PL, Banwart SA, Hedin RH (2002) Mine water, hydrology, pollution, remediation. Kluwer, DordrechtGoogle Scholar
  36. Yudovich YE, Ketris MP (2006) Selenium in coal: a review. Int J Coal Geol 67:112–126CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Philippe Gombert
    • 1
  • Ondra Sracek
    • 2
  • Nikolaos Koukouzas
    • 3
  • Grzegorz Gzyl
    • 4
  • Susana Tuñon Valladares
    • 5
  • Robert Frączek
    • 6
  • Christoph Klinger
    • 7
  • Arkadiusz Bauerek
    • 4
  • Juan Enrique Álvarez Areces
    • 8
  • Sinead Chamberlain
    • 9
  • Krzysztof Paw
    • 6
  • Łukasz Pierzchała
    • 4
  1. 1.INERISVerneuil-en-HalatteFrance
  2. 2.Department of Geology, Faculty of SciencePalacky UniversityOlomoucCzech Republic
  3. 3.CERTHMaroussiGreece
  4. 4.Central Mining Institute (GIG)KatowicePoland
  5. 5.AMBERG Infraestructuras S.A.AlcobendasSpain
  6. 6.TAURON, ZG JaninaLibiążPoland
  7. 7.DMT GmbH and Co. KGEssenGermany
  8. 8.HUNOSAOviedoSpain
  9. 9.The Coal AuthorityNottinghamshireUK

Personalised recommendations