Advertisement

Biotic and Abiotic Sequestration of Selenium in Anoxic Coal Waste Rock

  • Sean G. Deen
  • Viorica F. Bondici
  • Joseph Essilfie-Dughan
  • M. Jim Hendry
  • S. Lee Barbour
Technical Article
  • 3 Downloads

Abstract

Mobile selenium oxyanions (\({\text{S}}{{\text{e}}^{{\text{VI}}}}{\text{O}}_{4}^{{2 - }}\) and \({\text{S}}{{\text{e}}^{{\text{IV}}}}{\text{O}}_{3}^{{2 - }}\)) can be sequestered by biotic or abiotic reduction to non-mobile species or by adsorption to mineral surfaces. Microbial analyses and geochemical batch testing with samples collected from a coal waste rock dump in the Elk Valley, British Columbia, Canada were conducted to assess whether Se can be sequestered in anoxic, waste rock by these mechanisms. Bacteria that reduce Se(IV) and Se(VI) to Se(0) were isolated from the waste rock. Isolates that reduce Se(IV) to Se(0) were present in a water sample collected from an underlying rock drain. Three isolates were affiliated with Pseudomonas and Arthrobacter. One isolate was a putatively novel species. The production of Se(0) was confirmed by X-ray absorption near edge spectroscopy of a red precipitate isolated from a broth media containing rock-drain water. No adsorption or reduction of Se(VI) was observed in anoxic, abiotic (sterile) batch tests conducted with waste rock and a 1.0 mg/L Se(VI) solution, whereas Se(IV) was adsorbed by the waste rock and subsequently reduced to Se(0) in abiotic batch tests with a 0.7 mg/L Se(IV) solution. In non-sterile batch tests using waste rock and rock-drain water (0.39 mg/L Se(VI)), Se(VI) was biologically reduced to Se(IV), which was subsequently removed from solution by a combination of bioreduction, adsorption, and possibly abiotic reduction. This study suggests that, under anoxic conditions, Se sequestration in waste rock may occur via biotic reduction of Se(VI) to Se(IV) followed by adsorption of Se(IV) and abiotic and biotic reduction of Se(IV) to Se(0).

Keywords

Abiotic batch tests Selenate Selenite Adsorption Reduction Electron microprobe 

Biotische und abiotische Abscheidung von Selen aus Kohlebergen unter anoxischen Bedingungen

Zusammenfassung

Die Abscheidung von mobilen Selen-Oxyanionen (Se^VI O_4^(2-) und Se^IV O_3^(2-)) kann entweder infolge biotischer bzw. abiotischer Reduktion als immobile Spezies oder mittels Adsorption an Mineraloberflächen erfolgen. An Proben von Kohlenbergen vom Standort Elk Valley, British Columbia, Kanada wurde anhand mikrobiologischer Untersuchungen und Batch-Tests geprüft, inwieweit sich Se auf Grundlage dieser Mechanismen aus anoxischem, kohlehaltigen Bergematerial sequestrieren lässt. Aus dem Bergematerial wurden Bakterien isoliert, die Se(IV) und Se(VI) zu Se(0) reduzieren können. Isolate, die zur Reduktion von Se(IV) zu Se(0) in der Lage sind, wurden in einer Wasserprobe gefunden, welche aus einer Haldendrainage stammt. Drei Isolate waren den Gattungen Pseudomonas und Arthrobacter zugehörig, bei einem Isolat handelte es sich vermutlich um eine neue Gattung. Die Bildung von Se(0) ließ sich anhand Röntgen-Nahkanten-Absorptions-Spektroskopie an einem rotgefärbten Niederschlag nachweisen, der aus einem mit Drainagewasser versetzten Nährmedium stammte. Unter Sterilbedingungen konnten in anoxischen Batch-Tests mit Haldenmaterial und einer 1,0 mg/L Se(VI) enthaltenden Lösung weder Adsorption noch Reduktion beobachtet werden, wohingegen in abiotischen Batch-Tests Se(IV) aus einer 0,7 mg/L Se(IV) enthaltenden Lösung an Haldenmaterial adsorbiert und nachfolgend zu Se(0) reduziert wurde. In unsterilen Batch-Tests mit Haldenmaterial und Haldensickerwasser (0,39 mg/L Se(VI)) wurde Se(VI) biologisch zu Se(IV) reduziert, welches anschließend aus der Lösung durch Kombination von Bioreduktion, Adsorption und möglicherweise abiotischer Reduktion abgetrennt wurde. Die Untersuchungen führen zu dem Schluss, dass unter anoxischen Bedingungen eine Se-Abscheidung über mikrobiell katalysierte Reduktion von Se(VI) zu Se(IV) und nachfolgende Se(IV)-Adsorption sowie biotische bzw. abiotische Reduktion von Se(IV) zu Se(0) erfolgen kann.

Secuestro biótico y abiótico de selenio en roca de desecho de carbón anóxico

Resumen

Los oxianiones de selenio móvil (Se^VIO_4^(2-) y Se^IVO_3^(2-)) pueden ser capturados por reducción biótica o abiótica a especies no móviles o por adsorción sobre superficies minerales. Se realizaron análisis microbianos y pruebas geoquímicas de muestras provenientes de roca residual de carbón en el Valle de Elk, Columbia Británica, Canadá, para evaluar si Se puede ser secuestrado por la roca anóxica por estos mecanismos. Se aislaron bacterias que reducen Se(IV) y Se(VI) a Se(0). Los aislados que reducen Se(IV) a Se(0) estaban presentes en una muestra de agua recogida de un drenaje de roca subyacente. Tres aislados correspondían a Pseudomonas y Arthrobacter. Uno de los aislados era una especie putativamente nueva. La producción de Se(0) se confirmó por espectroscopía de absorción de rayos X en la región cercana al borde de un precipitado rojo aislado del medio de cultivo que contenía agua de drenaje de roca. No se observó adsorción o reducción de Se(VI) en ensayos en batch, bajo condiciones anóxicas y abióticas (estériles) realizadas con roca estéril y una solución de Se(VI) 1,0 mg/L, mientras que Se(VI) fue absorbido por la roca estéril y posteriormente se redujo a Se(0) en ensayos abióticos con una solución 0,7 mg/L de Se(IV). En ensayos en batch no estériles con roca residual y agua de desagüe (0,39 mg/L Se(VI)), Se(VI) se redujo bióticamente a Se(IV), que posteriormente fue eliminado de la solución mediante una combinación de bioreducción, adsorción y posiblemente reducción abiótica. Este estudio sugiere que, bajo condiciones anóxicas, el secuestro de Se en la roca estéril puede ocurrir por reducción biótica de Se(VI) a Se(IV) seguido de adsorción de Se(IV) y reducción abiótica y biótica de Se(IV) a Se( 0).

缺氧煤矸石的生物和非生物硒圈蔽

抽象

活性硒酸盐(SeVIO 4 2- 和SeIVO 3 2- )可被生物或非生物还原为非活性形态或被吸附到矿物表面。从加拿大不列颠哥伦比亚省Elk谷煤矸石堆取样,进行微生物分析和地球化学批次试验,评价硒是否能够被缺氧圈蔽。从矸石中分离出将硒由Se(IV)和Se(VI)还原至Se(0)的细菌。在矸石堆底排放废水中也发现能够还原Se(VI)为Se(0)的分离物。三种分离物属假单细胞菌属和节细菌属。一种分离物被认为是新种。含矿物废水的培养基内红色沉淀的光谱边缘X射线吸收证实了Se(0)生成。矸石和1.0mg/L Se(VI)溶液的缺氧、无生物批次试验未发现Se(Vi)的吸附或还原,但是0.7mg/L Se(IV)的无生物批次试验却发现Se(IV)被矸石吸附并随后还原为Se(0)。在矸石和0.39 mg/L Se(VI)矸石废水的非无菌批次试验中,Se(VI)被生物还原为Se(IV),随后Se(IV)为生物还原、吸附或无生物还原所去除。研究表明,在缺氧环境矸石堆内,生物作用将Se(VI)还原为Se(IV),随后Se(IV)被吸附,Se(IV)被非生物和生物还原为Se (0)。

Notes

Acknowledgements

Funding for this study was provided by NSERC-IRC funds to MJH (184573), SLB (IRCPJ 428588-11), and Teck Resource Limited. Technical assistance was provided by Teck Resources Limited, the operator of the coal mines in the Elk Valley, in support of their multi-disciplinary research and development program to address the trend of increasing Se in the Elk River. We acknowledge the support of Sandeepraja Dangeti for PCR, Fina Nelson for IC, Jianzhong Fan for ICP-MS, Jing Chen for HPLC-ICP-MS, Erin Schmeling for BET, and Tom Bonli for EDS, WDS, and XRD.

Supplementary material

10230_2018_546_MOESM1_ESM.pdf (1.4 mb)
Supplementary material 1 (PDF 1460 KB)

References

  1. Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. A.A. Balkema Publishers, AmsterdamCrossRefGoogle Scholar
  2. Balistrieri LS, Chao TT (1987) Selenium adsorption by goethite. Soil Sci Soc Am J 51:1145–1151CrossRefGoogle Scholar
  3. Barbour SL, Hendry MJ, Carey SK (2016) High-resolution profiling of the stable isotopes of water in unsaturated coal waste rock. J Hydrol 534:616–629CrossRefGoogle Scholar
  4. Bar-Yosef B, Meek D (1987) Selenium sorption by kaolinite and montmorillonite. Soil Sci 144:11–19CrossRefGoogle Scholar
  5. Beatty JM, Russo GA (2014) Ambient water quality guidelines for selenium technical report update. British Columbia Ministry of Environment, VictoriaGoogle Scholar
  6. Bianchin M, Martin A, Adams J (2013) In-situ immobilization of selenium within the saturated zones of backfilled pits at coal-mine operations. In: Proceedings, 37th annual British Columbia mine reclamation symposium, Vancouver, BC, pp 1–16Google Scholar
  7. Biswas A, Hendry MJ, Essilfie-Dughan J (2017) Geochemistry of arsenic in low sulfide-high carbonate coal waste rock, Elk Valley, British Columbia, Canada. Sci Total Environ 579:396–408CrossRefGoogle Scholar
  8. Bondici VF, Lawrence JR, Khan NH, Hill JE, Yergeau E, Wolfaardt GM, Warner J, Korber DR (2013) Microbial communities in low permeability, high pH uranium mine tailings: characterization and potential effects. J Appl Microbiol 114:1671–1686CrossRefGoogle Scholar
  9. Bruggeman C, Maes A, Vancluysen J, Vandemussele P (2005) Selenite reduction in Boom clay: effect of FeS2, clay minerals and dissolved organic matter. Environ Pollut 137:209–221CrossRefGoogle Scholar
  10. Burton GA, Giddings TH, DeBrine P, Fall R (1987) High incidence of selenite-resistant bacteria from a site polluted with selenium. Appl Environ Microbiol 53:185–188Google Scholar
  11. Charlet L, Scheinost AC, Tournassat C, Greneche JM, Géhin A, Fernández-Martınez A, Coudert S, Tisserand D, Brendle J (2007) Electron transfer at the mineral/water interface: selenium reduction by ferrous iron sorbed on clay. Geochim Cosmochim Acta 71:5731–5749CrossRefGoogle Scholar
  12. Charlet L, Kang M, Bardelli F, Kirsch R, Géhin A, Grenèche J-M, Chen F (2012) Nanocomposite pyrite–greigite reactivity toward Se(IV)/Se(VI). Environ Sci Technol 46:4869–4876CrossRefGoogle Scholar
  13. Chen Y-W, Truong H-YT, Belzile N (2009) Abiotic formation of elemental selenium and role of iron oxide surfaces. Chemosphere 74:1079–1084CrossRefGoogle Scholar
  14. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, Mcgarrell DM, Marsh T, Garrity GM, Tiedje JM (2009) The ribosomal database project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145CrossRefGoogle Scholar
  15. Couture R-M, Charlet L, Markelova E, Madé B, Parsons CT (2015) On–off mobilization of contaminants in soils during redox oscillations. Environ Sci Technol 49:3015–3023CrossRefGoogle Scholar
  16. Day S, Kennedy C, Pumphrey J (2012) Interpretation of selenium release from coal mine waste rock dumps, southeastern British Columbia, Canada. In: Proceedings of 9th International Conference on acid rock drainage, pp 1678–1689Google Scholar
  17. Duc M, Lefevre G, Fedoroff M, Jeanjean J, Rouchaud JC, Monteil-Rivera F, Dumonceau J, Milonjic S (2003) Sorption of selenium anionic species on apatites and iron oxides from aqueous solutions. J Environ Radioact 70:61–72CrossRefGoogle Scholar
  18. Dungan RS, Frankenberger WT (1999) Microbial transformations of selenium and the bioremediation of seleniferous environments. Bioremediat J 3:171–188CrossRefGoogle Scholar
  19. Eschbach M, Möbitz H, Rompf A, Jahn D (2003) Members of the genus Arthrobacter grow anaerobically using nitrate ammonification and fermentative processes: anaerobic adaptation of aerobic bacteria abundant in soil. FEMS Microbiol Lett 223:227–230CrossRefGoogle Scholar
  20. Essilfie-Dughan J, Hendry MJ, Dynes JJ, Hu Y, Biswas A, Barbour SL, Day S (2017) Geochemical and mineralogical characterization of sulfur and iron in coal waste rock, Elk Valley, British Columbia, Canada. Sci Total Environ 586:753–769CrossRefGoogle Scholar
  21. Garbisu C, Ishii T, Leighton T, Buchanan BB (1996) Bacterial reduction of selenite to elemental selenium. Chem Geol 132:199–204CrossRefGoogle Scholar
  22. Goodarzi F, Grieve DA, Sanei H, Gentzis T, Goodarzi NN (2009) Geochemistry of coals from the Elk Valley coalfield, British Columbia, Canada. Int J Coal Geol 77:246–259CrossRefGoogle Scholar
  23. Hayes KF, Roe AL, Brown GE, Hodgson KO, Leckie JO, Parks GA (1987) In situ X-ray absorption study of surface complexes: selenium oxyanions on α-FeOOH. Science 238:783–786CrossRefGoogle Scholar
  24. Hendry MJ, Biswas A, Essilfie-Dughan J, Chen N, Day SJ, Barbour SL (2015) Reservoirs of selenium in coal waste rock: Elk Valley, British Columbia, Canada. Environ Sci Technol 49:8228–8236CrossRefGoogle Scholar
  25. Herbel MJ, Johnson TM, Oremland RS, Bullen TD (2000) Fractionation of selenium isotopes during bacterial respiratory reduction of selenium oxyanions. Geochim Cosmochim Acta 64:3701–3709CrossRefGoogle Scholar
  26. Hockin S, Gadd GM (2006) Removal of selenate from sulfate-containing media by sulfate-reducing bacterial biofilms. Environ Microbiol 8:816–826CrossRefGoogle Scholar
  27. Hunter WJ, Manter DK (2009) Reduction of selenite to elemental red selenium by Pseudomonas sp. Strain CA5. Curr Microbiol 58:493–498CrossRefGoogle Scholar
  28. Ike M, Takahashi K, Fujita T, Kashiwa M, Fujita M (2000) Selenate reduction by bacteria isolated from aquatic environment free from selenium contamination. Water Res 34:3019–3025CrossRefGoogle Scholar
  29. Jenner GA, Longerich HP, Jackson SE, Fryer BJ (1990) ICP-MS—a powerful tool for high-precision trace-element analysis in earth sciences: evidence from analysis of selected U.S.G.S. reference samples. Chem Geol 83:133–148CrossRefGoogle Scholar
  30. Kang M, Chen F, Wu S, Yang Y, Bruggeman C, Charlet L (2011) Effect of pH on aqueous Se(IV) reduction by pyrite. Environ Sci Technol 45:2704–2710CrossRefGoogle Scholar
  31. Keller R, Holzapfel WB, Schulz H (1977) Effect of pressure on the atom positions in Se and Te. Phys Rev B 16:4404–4412CrossRefGoogle Scholar
  32. Kennedy C, Day S, Mackie D, Pesonen N (2015) Biogeochemical selenium sequestration in unsaturated coal reject piles. In: Proceedings, 10th international conference on acid rock drainage, pp 107–117Google Scholar
  33. Knotek-Smith HM, Crawford DL, Möller G, Henson RA (2006) Microbial studies of a selenium-contaminated mine site and potential for on-site remediation. J Ind Microbiol Biot 33:897–913CrossRefGoogle Scholar
  34. Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M (2011) Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 112:259–264CrossRefGoogle Scholar
  35. Lemly AD (2004) Aquatic selenium pollution is a global environmental safety issue. Ecotoxicol Environ Saf 59:44–56CrossRefGoogle Scholar
  36. Lenz M, Lens PNL (2009) The essential toxin: the changing perception of selenium in environmental sciences. Sci Total Environ 407:3620–3633CrossRefGoogle Scholar
  37. Lenz M, Van Hullebusch ED, Hommes G, Corvini PFX, Lens PNL (2008) Selenate removal in methanogenic and sulfate-reducing upflow anaerobic sludge bed reactors. Water Res 42:2184–2194CrossRefGoogle Scholar
  38. Lortie L, Gould WD, Rajan S, McCready RGL, Cheng K-J (1992) Reduction of selenate and selenite to elemental selenium by a Pseudomonas stutzeri isolate. Appl Environ Microbiol 58:4042–4044Google Scholar
  39. Lussier C, Veiga V, Baldwin S (2003) The geochemistry of selenium associated with coal waste in the Elk River Valley, Canada. Environ Geol 44:905–913CrossRefGoogle Scholar
  40. Macy JM, Michel TA, Kirsch DG (1989) Selenate reduction by a Pseudomonas species: a new mode of anaerobic respiration. FEMS Microbiol Lett 52:195–198CrossRefGoogle Scholar
  41. Mahmood FN, Barbour SL, Kennedy C, Hendry MJ (2017) Nitrate release from waste rock dumps in the Elk Valley, British Columbia, Canada. Sci Total Environ 605–606:915–928CrossRefGoogle Scholar
  42. Maiers DT, Wichlacz PL, Thompson DL, Bruhn DF (1988) Selenate reduction by bacteria from a selenium-rich environment. Appl Environ Microbiol 54:2591–2593Google Scholar
  43. Martin AJ, Simpson S, Fawcett S, Wiramanaden CIE, Pickering IJ, Belzile N, Chen Y-W, London J, Wallschläger D (2011) Biogeochemical mechanisms of selenium exchange between water and sediments in two contrasting lentic environments. Environ Sci Technol 45:2605–2612CrossRefGoogle Scholar
  44. Masscheleyn PH, Delaune RD, Patrick WH (1990) Transformations of selenium as affected by sediment oxidation-reduction potential and pH. Environ Sci Technol 24:91–96CrossRefGoogle Scholar
  45. McDonald LE, Strosher MM (1998) Selenium mobilization from surface coal mining in the Elk River Basin, British Columbia: a survey of water, sediment and biota. The Technical and Research Committee on Reclamation, Cranbrook, BCGoogle Scholar
  46. Myneni SCB, Tokunaga TK, Brown GE (1997) Abiotic Selenium redox transformations in the presence of Fe(II,III) oxides. Science 278:1106–1109CrossRefGoogle Scholar
  47. Naveau A, Monteil-Rivera F, Guillon E, Dumonceau J (2007) Interactions of aqueous selenium (-II) and (IV) with metallic sulfide surfaces. Environ Sci Technol 41:5376–5382CrossRefGoogle Scholar
  48. Oremland RS, Hollibaugh JT, Maest AS, Presser TS, Miller LG, Culbertson CW (1989) Selenate reduction to elemental selenium by anaerobic bacteria in sediments and culture: biogeochemical significance of a novel, sulfate-independent respiration. Appl Environ Microbiol 55:2333–2343Google Scholar
  49. Oremland RS, Herbel MJ, Blum JS, Langley S, Beveridge TJ, Ajayan PM, Sutto T, Ellis AV, Curran S (2004) Structural and spectral features of selenium nanospheres produced by Se-respiring bacteria. Appl Environ Microbiol 70:52–60CrossRefGoogle Scholar
  50. Parmentier M, Ollivier P, Joulian C, Albrecht A, Hadi J, Greneche J-M, Pauwels H (2014) Enhanced heterotrophic denitrification in clay media: the role of mineral electron donors. Chem Geol 390:87–99CrossRefGoogle Scholar
  51. Picardal F (2012) Abiotic and microbial interactions during anaerobic transformations of Fe(II) and NOx. Front Microbiol 3:1–7CrossRefGoogle Scholar
  52. Rovira M, Giménez J, Martínez M, Martínez-Lladó X, de Pablo J, Martí V, Duro L (2008) Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J Hazard Mater 150:279–284CrossRefGoogle Scholar
  53. Scheinost AC, Kirsch R, Banerjee D, Fernandez-Martinez A, Zaenker H, Funke H, Charlet L (2008) X-ray absorption and photoelectron spectroscopy investigation of selenite reduction by FeII-bearing minerals. J Contam Hydrol 102:228–245CrossRefGoogle Scholar
  54. Seby F, Potin-Gautier M, Giffaut E, Borge G, Donard OFX (2001) A critical review of thermodynamic data for selenium species at 25 °C. Chem Geol 171:173–194CrossRefGoogle Scholar
  55. Staicu LC, Ackerson CJ, Cornelis P, Ye L, Berendsen RL, Hunter WJ, Noblitt SD, Henry CS, Cappa JJ, Montenieri RL, Wong AO, Musilova L, Sura-de Jong M, van Hullebusch ED, Lens PNL, Reynolds RJB, Pilon-Smits EAH (2015) Pseudomonas moraviensis subsp. stanleyae, a bacterial endophyte of hyperaccumulator Stanleya pinnata, is capable of efficient selenite reduction to elemental selenium under aerobic conditions. J Appl Microbiol 119:400–410CrossRefGoogle Scholar
  56. Steinberg NA, Blum SJ, Hochstein L, Oremland RS (1992) Nitrate is a preferred electron acceptor for growth of freshwater selenate-respiring bacteria. Appl Environ Microbiol 58:426–428Google Scholar
  57. Stolz JF, Oremland RS (1999) Bacterial respiration of arsenic and selenium. FEMS Microbiol Rev 23:615–627CrossRefGoogle Scholar
  58. Su C, Suarez DL (2000) Selenate and selenite sorption on iron oxides an infrared and electrophoretic study. Soil Sci Soc Am J 64:101–111CrossRefGoogle Scholar
  59. Swanson S (2010) The way forward: a strategic plan for the management of selenium at Teck Coal operations. In: The strategic advisory panel on selenium management. Report prepared for Teck Coal Ltd, CalgaryGoogle Scholar
  60. Tachi Y, Shibutani T, Sato H, Yui M (1998) Sorption and diffusion behavior of selenium in tuff. J Contam Hydrol 35:77–89CrossRefGoogle Scholar
  61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739CrossRefGoogle Scholar
  62. Teck Resources Limited (2016) Permit 107517. Environmental Monitoring Committee: 2016 Public ReportGoogle Scholar
  63. Villeneuve SA, Barbour SL, Hendry MJ, Carey SK (2017) Estimates of water and solute release from a coal waste rock dump in the Elk Valley, British Columbia, Canada. Sci Total Environ 601–602:543–555CrossRefGoogle Scholar
  64. Wellen CC, Shatilla NJ, Carey SK (2015) Regional scale selenium loading associated with surface coal mining, Elk Valley, British Columbia, Canada. Sci Total Environ 532:791–802CrossRefGoogle Scholar
  65. Yang SI (2011) Biotransformation and interactions of selenium with mixed and pure culture biofilms. PhD Diss, Univ of SaskatchewanGoogle Scholar
  66. Yang SI, George GN, Lawrence JR, Kaminskyj SGW, Dynes JJ, Lai B, Pickering IJ (2016) Multispecies biofilms transform selenium oxyanions into elemental selenium particles: studies using combined synchrotron X-ray fluorescence imaging and scanning transmission X-ray microscopy. Environ Sci Technol 50:10343–10350CrossRefGoogle Scholar
  67. Zhao Y (2014) Genoics of Erwinia amylovora and related Erwinia Species associated with pome fruit trees. In: Gross DC, Lichens-Park A, Kole C (eds) Genomics of plant-associated bacteria. Springer, Berlin, pp 1–36Google Scholar
  68. Ziemkiewicz PF, O’Neal M, Lovett RJ (2011) Selenium leaching kinetics and in situ control. Mine Water Environ 30:141–150CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Sean G. Deen
    • 1
  • Viorica F. Bondici
    • 2
  • Joseph Essilfie-Dughan
    • 3
  • M. Jim Hendry
    • 3
  • S. Lee Barbour
    • 1
  1. 1.Department of Civil, Geological, and Environmental EngineeringUniversity of SaskatchewanSaskatoonCanada
  2. 2.Canadian Light SourceSaskatoonCanada
  3. 3.Department of Geological SciencesUniversity of SaskatchewanSaskatoonCanada

Personalised recommendations