Advertisement

Characterization of Iron Precipitates in a SAPS Limestone Layer for Flushing System Design

  • Dong-kil Lee
  • Seung-wook Shin
  • Young-wook Cheong
Technical Article
  • 29 Downloads

Abstract

In successive alkalinity-producing systems (SAPS), the limestone tends to get coated with precipitates, reducing the permeability of the SAPS, the mine water treatment efficiency, and the service life of the SAPS. Further study of the precipitates are required to improve the design of flushing systems. In this study, the growth characteristics, particle size distribution, and chemical composition of these precipitates were determined. Based on their growth characteristics, precipitates were classified into four types, and the critical velocity of the precipitates, which is a design parameter of flushing systems, was evaluated through experiments. The resulting critical velocity was used to identify the minimum number of orifices required for lateral pipes in flushing systems.

Keywords

Acid mine drainage SEM-EDS Particle size distribution Critical velocity 

Charakterisierung von Eisenpräzipitaten in einer Kalksteinschicht zur Gestaltung eines SAPS Spülsystems

Zusammenfassung

In schrittweise Alkalinitäts-produzierenden Systemen (SAPS) neigt der Kalkstein dazu, mit Ablagerungen überzogen zu werden, was die Durchlässigkeit der SAPS, die Effizienz der Grubenwasserbehandlung und die Lebensdauer der SAPS verringert. Obwohl bereits ein Spülsystem als mögliche Lösung für dieses Problem entwickelt wurde, sind weitere Untersuchungen solcher Ablagerungen erforderlich, um das Design von Spülsystemen zu verbessern. In dieser Studie wurden die Wachstumseigenschaften, die Partikelgrößenverteilung und die chemische Zusammensetzung dieser Präzipitate bestimmt. Basierend auf ihren Wachstumseigenschaften wurden die Präzipitate in vier Klassen eingeteilt. Anhand von Experimenten wurde die kritische Fließgeschwindigkeit für die krustenbildenden Partikel ermittelt, da sie eine Mastervariable für die Bemessung von Spülsystemen darstellt. Die resultierende kritische Fließgeschwindigkeit wurde verwendet, um die Mindestanzahl an Düsen festzulegen, die die lateral verlaufenden Rohre von Spülsystemen aufweisen müssen.

Caracterización de los precipitados de hierro en la capa de piedra caliza de SAPS para el diseño del sistema de descarga

Resumen

En los sistemas productores de alcalinidad (SAPS), la piedra caliza tiende a recubrirse con precipitados reduciendo la permeabilidad del SAPS, la eficiencia del tratamiento del agua de la mina y la vida útil del SAPS. Aunque se ha desarrollado un sistema de descarga como una posible solución a este problema, aún se requieren estudios sobre los precipitados para mejorar el diseño de los sistemas de descarga. En este trabajo, se determinaron las características de crecimiento, la distribución del tamaño de partícula y la composición química de estos precipitados. En base a sus características de crecimiento, los precipitados se clasificaron en cuatro tipos y se evaluó la velocidad crítica de los precipitados, que es un parámetro de diseño de los sistemas de descarga. La velocidad crítica resultante se usó para identificar el número mínimo de orificios requeridos para tuberías laterales en los sistemas de descarga.

SAPS 冲洗系统石灰石层的铁沉淀特征

抽象

在连续碱产生系统(SAPS)中,石灰石容易被沉淀覆盖,从而使SAPS系统渗透能力减小、矿井废水处理效率降低和运行寿命缩短。如果利用冲洗维护系统来解决上述SAPS问题,沉淀特征研究对提高冲洗系统设计效果尤为重要。研究了沉淀物的生长特征、粒径分布和化学组成。依据沉淀物生长特征,将沉淀分为四种类型,试验获取了冲洗系统设计所需参数临界沉淀速度。依据最终的临界沉淀速度确定了冲洗系统侧流管所需的最小喷孔数量。

Notes

Acknowledgements

This research was supported by the Basic Research Project of the Korea Institute of Geoscience and Mineral Resources (KIGAM) and Mine Reclamation Corp.(MIRECO), funded by the Ministry of Science and ICT of Korea.

References

  1. Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145CrossRefGoogle Scholar
  2. Bhattacharya J, Ji S, Lee H, Cheong Y, Yim G, Min J, Choi Y (2008) Treatment of acidic coal mine drainage: design and operational challenges of successive alkalinity producing systems. Mine Water Environ 27:12–19CrossRefGoogle Scholar
  3. Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res 30:1617–1624CrossRefGoogle Scholar
  4. Corbitt RA (1990) Standard handbook of environmental engineering. McGraw-Hill, New York CityGoogle Scholar
  5. Cravotta III CA (2008) Laboratory and field evaluation of a flushable oxic limestone drain for treatment of net-acidic drainage from a flooded anthracite mine. Pennsylvania, USA. Appl Geochem 23:3404–3422CrossRefGoogle Scholar
  6. Danehy TP, Hilton T, Watzlaf GR, Johnson F, Busler SL, Denholm CF, Dunn MH (2002) Vertical flow pond piping system design considerations. In: Proceeding, annual meeting of American Soc of Mining and Reclamation (ASMR), pp 916–934Google Scholar
  7. Demchak J, Morrow T, Skousen J (2001) Treatment of acid mine drainage by four vertical flow wetlands in Pennsylvania. Geochem Explor Env A 1:71–80CrossRefGoogle Scholar
  8. Ford KL (2003) Passive treatment systems for acid mine drainage. US Bureau of Land Management. http://www.blm.gov/nstc/library/techno2.htm. Accessed 1 Apr 2017
  9. Hedin RS, Nairn RW, Kleinmann RLP (1994) Passive treatment of polluted coal mine drainage. In: USBM IC 9389. US Dept of the Interior, Washington, DCGoogle Scholar
  10. Jarvis AP, Laine DM (2003) Engineering design aspects of passive in situ remediation of mining effluents. Land Contam Reclam 11:113–125CrossRefGoogle Scholar
  11. Kepler DA, McCleary EC (1997) Passive aluminum treatment successes. In: Proceeding, 18th Annual WV Task Force Symp. https://wvmdtaskforce.files.wordpress.com/2015/12/97-kepler.pdf. Accessed 1 Apr 2017
  12. Lee JY, Kim JH, Woo KJ, Ji WH (2013) A full-scale successive alkalinity-producing passive system (SAPPS) for the treatment of acid mine drainage. Water Air Soil Poll.  https://doi.org/10.1007/s11270-013-1656-4 Google Scholar
  13. Naver (2016) https://map.naver.com. Accessed 3 May 2016
  14. Oroskar AR, Turian RM (1980) The critical velocity in pipeline flow of slurries. AIChE J 26:550–558CrossRefGoogle Scholar
  15. Rose AW (2004) Vertical flow systems – effects of time and acidity relations. In: Proceedings, National Meeting of the American Soc of Mining and Reclamation (ASMR) and the 25th WV surface mine drainage task force, pp 1595–1616Google Scholar
  16. Rose AW (2006) Long-term performance of vertical flow ponds—an update. In: Proceeding, 7th international conf on acid rock drainage (ICARD), pp 1595–1616Google Scholar
  17. Skousen J, Zipper CE, Rose A,, Nairn R, McDonald LM, Kleinmann RL, Ziemkiewicz PF (2017) Review of passive systems for acid mine drainage treatment. Mine Water Environ 36:133–153CrossRefGoogle Scholar
  18. Taylor K, Banks D, Watson I (2016) Characterisation of hydraulic and hydrogeochemical processes in a reducing and alkalinity-producing system (RAPS) treating mine drainage. South Wales, UK. Int J Coal Geol 164:35–47CrossRefGoogle Scholar
  19. Thomas AD (1979) Predicting the deposit velocity for horizontal turbulent pipe flow of slurries. Int J Multiphas Flow 5:113–129CrossRefGoogle Scholar
  20. Watson IA, Taylor K, Sapsford DJ, Banks D (2009) Tracer testing to investigate hydraulic performance of a RAPS treating mine water in south Wales. In: Proceeding 8th ICARD (Securing the Future), pp 762–771Google Scholar
  21. Watzlaf GR, Kairies CL, Schroeder KT, Danehy T, Beam R (2002) Quantitative results from the flushing of four reducing and alkalinity-producing systems. Presented at the WV Surface Mine Drainage Task Force Symp. https://wvmdtaskforce.files.wordpress.com/2016/01/02-watzlaf.pdf. Accessed 1 Apr 2017
  22. Weaver KR, Lagnese KM, Hedin RS (2004) Technology and design advances in passive treatment system flushing. In: Proceedings of annual meeting of ASMR and the 25th WV surface mine drainage task force, pp 1974–1989Google Scholar
  23. Wolkersdorfer C, Hasche A, Gobel A, Younger PL (2005) Tracer test in the Bowden Close passive treatment system. Wiss Mitt 28:87–92Google Scholar
  24. Yim GJ, Ji SW, Cheong YW, Carmen MN, Song HC (2015) The influences of the amount of organic substrate on the performance of pilot-scale passive bioreactors for acid mine drainage treatment. Environ Earth Sci 73:4717–4727CrossRefGoogle Scholar
  25. Younger P (2000) The adoption and adaptation of passive treatment technologies for mine waters in the United Kingdom. Mine Water Environ 19:84–97CrossRefGoogle Scholar
  26. Younger P, Banwart S, Hedin R (2002) Mine water hydrology. Springer, NetherlandsCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Korea Institute Geoscience and Mineral Resources (KIGAM)DaejeonSouth Korea

Personalised recommendations