Advertisement

Prediction of Water Inrush Areas Under an Unconsolidated, Confined Aquifer: The Application of Multi-information Superposition Based on GIS and AHP in the Qidong Coal Mine, China

  • Luwang Chen
  • Xiaoqing Feng
  • Dongqing Xu
  • Wen Zeng
  • Zhiyuan Zheng
Technical Article
  • 82 Downloads

Abstract

The complex geological and hydrogological conditions under the unconsolidated and confined aquifer in the Qidong coal mine have resulted in serious water-inrush hazards. Multi-information superposition was used to predict water inrush areas. Six controlling factors (the specific yield, the effective thickness and load transfer coefficient of the aquifer, the fractal dimensional value of bedrock faults, the effective thickness of the protective bedrock layer, and the distance between the key hard stratum and the primary mineable coal seam) were selected, and a multi-information superposition model was established. Relatively safe areas and medium and higher risk areas were identified using a geographic information system (GIS) and the analytic hierarchy process (AHP). Using the no. 71 primary coal seam in the northern portion of the Qidong mine as an example, the water-inrush areas predicted by the model aligned with observed conditions, which validates the multi-information superposition model. Potential inrush areas of the no. 61, 82, and 9 primary coal seams in the southern portion of the Qidong mine were subsequently identified using this method, which will aid future mining operation.

Keywords

Groundwater Risk Hazard Coal mining Geographic information system Analytic hierarchy process 

松散承压含水层下采煤突水危险区预测:基于GIS和AHP多元信息融合法在中国祁东煤矿的应用

摘要

祁东煤矿松散承压含水层下复杂的地质和水文地质条件已引起一系列煤层顶板突水事故的发生。本文利用多元信息融合法预测了煤层顶板突水危险区。选取了六个控制因素(单位涌水量、含水层有效厚度、含水层荷载传递系数、基岩断层分形维值、基岩保护层有效厚度、关键硬岩层与主采煤层间距), 建立了煤层顶板突水多元信息融合模型。应用地理信息系统(GIS)和层次分析法(AHP)划分出安全区、中等危险区和危险区。以祁东煤矿北部采区71主采煤层为例, 由模型所预测的突水危险区与现场实际观测一致, 模型具有良好的适用性。由该模型所预测的祁东煤矿南部采区61、82和9煤顶板潜在突水危险区, 将有助于煤矿进一步的安全开采。

Vorhersage von Wassereinbruchszonen unter einem gespanntem Wasserkörper in Lockergebirge: Die Anwendung integrierter Informationsüberlagerung basierend auf GIS und AHP in der Qidong Kohlengrube in China

Zusammenfassung

Die komplexen geologischen und hydrogeologischen Bedingungen unterhalb eines gespannten Aquifers im Lockergebirge in der Qidong Kohlengrube haben zu schwerwiegenden Wassereinbruchsrisiken geführt. Die integrierte Informationsüberlagerung wurde zur Vorhersage von Wassereinbruchszonen eingesetzt. 6 Einflussfaktoren (das Ausbringen, die effektive Mächtigkeit und der Durchlässigkeitskoeffizient des Aquifers, die fraktale Dimension der Störungszonen im Grundgebirge, die effektive Mächtigkeit der Sicherheitsschwebe und der Abstand zwischen Leithorizont und dem Hauptflöz) wurden ausgewählt und ein Multiinformationsüberlagerungsmodell wurde aufgestellt. Relativ sichere Zonen sowie Mittel- und Hochrisikozonen wurden unter Verwendung eines Geographischen Informationssystems (GIS) und eines Analytischen Hierarchieprozesses (AHP) identifiziert. Am Beispiel des Hauptflözes Nr. 71 im nördlichen Bereich der Qidong Grube wurden die mit dem Modell vorhergesagten Wassereinbruchszonen mit den beobachteten Bedingungen verglichen und so das Multiinformationsüberlagerungsmodel überprüft. Potentielle Wassereinbruchszonen in den Hauptflözen Nr. 61, 82 und 9 im südlichen Bereich der Qidong Grube wurden mit dieser Methode in Folge erkannt, womit der künftige Abbau unterstützt wird.

Predicción de áreas de irrupción de agua bajo un acuífero confinado no consolidado: la aplicación de la superposición de información múltiple basada en GIS y AHP en la mina de carbón Qidong, China

Resumen

Las complejas condiciones geológicas e hidrográficas bajo un acuífero no consolidado y confinado en la mina de carbón de Qidong han provocado graves riesgos de irrupción de agua. La superposición de información múltiple se utilizó para predecir las áreas de entrada de agua. Se seleccionaron seis factores de control (el rendimiento específico, el espesor efectivo y el coeficiente de transferencia de carga del acuífero, el valor dimensional fractal de las fallas del lecho de roca, el espesor efectivo de la capa protectora del lecho de roca y la distancia entre el estrato duro clave y la veta principal de carbón explotable) y se estableció un modelo de superposición de información múltiple. Se identificaron áreas relativamente seguras y áreas de riesgo medio y alto utilizando un sistema de información geográfica (GIS) y el proceso de jerarquía analítica (AHP). Usando el no. 71 la veta de carbón primario en la porción norte de la mina Qidong como un ejemplo, con el modelo se predijeron las áreas de entrada de agua que ajustaron adecuadamente a las condiciones observadas validando el modelo usado. Con el mismo modelo se predijeron posibles áreas de irrupción de las vetas de carbón primario no. 61, 82 y 9 en la porción sur de la mina Qidong, lo que ayudará a futuras operaciones mineras.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (41372244, 41172216, and 41373095) and the Anhui Science and Technology Research Project of China (1501zc04048). The authors also sincerely thank the reviewers for their useful suggestions.

References

  1. Anchang JY, Ananga EO, Pu RL (2016) An efficient usupervised index based approach for mapping urban vegetation from IKONOS imagery. Int J Appl Earth Obs 50:221–220CrossRefGoogle Scholar
  2. Chen LW, Feng XQ, Xie WP, Zeng W, Zheng ZY (2016a) Using a fluid–solid coupled numerical simulation to determine a suitable size for barrier pillars when mining shallow coal seams beneath an unconsolidated, confined aquifer. Mine Water Environ 36(1):67–77CrossRefGoogle Scholar
  3. Chen LW, Feng XQ, Xie WP, Xu DQ (2016b) Prediction of water-inrush risk areas in process of mining under the unconsolidated and confined aquifer: a case study from the Qidong coal mine in China. Environ Earth Sci 75.  https://doi.org/10.1007/s12665-016-5533-5 Google Scholar
  4. Cheng C, Chen XH (2007) Evaluation of methods for determination of hydraulic properties in an aquifer–aquitard system hydrologically connected to a river. Hydrogeol J 15(4):669–678CrossRefGoogle Scholar
  5. Guo PK, Cheng YP, Jin K, Liu YP (2014) The impact of faults on the occurrence of coal bed methane in Renlou coal mine, Huaibei coalfield, China. J Nat Gas Sci Eng 17:151–158CrossRefGoogle Scholar
  6. He ZF, Zhang YN, Guo QC, Zhao XR (2014) Comparative study of artificial neural networks and wavelet artificial neural networks for groundwater depth data forecasting with various curve fractal dimensions. Water Resour Manag 28(15):5297–5317CrossRefGoogle Scholar
  7. Huang HF, Mao XB, Yao BH, Pu H (2012) Numerical simulation on fault water-inrush based on fluid-solid coupling theory. J Coal Sci Eng 18(3):291–296CrossRefGoogle Scholar
  8. LaMoreaux JW, Wu Q, Zhou WF (2014) New development in theory and practice in mine water control in China. Carbonate Evaporite 29(2):141–145CrossRefGoogle Scholar
  9. Li LC, Yang TH, Liang ZZ, Zhu WC, Tang CN (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85(3–4):276–288Google Scholar
  10. Li B, Zhang PL, Wang ZJ, Mi SS, Liu PY (2012) Morphological covering based generalized dimension for gear fault diagnosis. Nonlinear Dyn 67(4):2561–2571CrossRefGoogle Scholar
  11. Meng ZP, Gao YF, Lu AH, Wang R, Qiao X, Huang CY (2013) Water inrush risk evaluation of coal mining under Quaternary alluvial water and reasonable design method of waterproof coal pillar. J Min Saf Eng 30(1):23–29 (Chinese)Google Scholar
  12. Miao XX, Cui XM, Wang JA, Xu JL (2011) The height of fractured water-conducting zone in undermined rock strata. Eng Geol 120:32–39CrossRefGoogle Scholar
  13. Saaty TL (1980) The analytic hierarchy process. McGraw-Hill, New York CityGoogle Scholar
  14. Wang XZ (2012) Study on occurrence condition and prevention of support crushing and water inrush disaster during mining under unconsolidated confined aquifer. PhD diss, China Univ of Mining and Technology (in Chinese) Google Scholar
  15. Wang XZ, Xu JL, Zhu WB, Li YC (2012) Roof pre-blasting to prevent support crushing and water inrush accidents. Int J Min Sci Technol 22(3):379–384CrossRefGoogle Scholar
  16. Wang HF, Wang L, Cheng YP, Zhou HX (2013) Characteristics and dominant controlling factors of gas outburst in Huaibei coalfeld and its countermeasures. Int J Min Sci Technol 23:591–596CrossRefGoogle Scholar
  17. Wu Q, Zhou W (2008a) Prediction of groundwater inrush into coal mines from aquifer underlying the coal seams in China: Vulnerability index method and its construction. Environ Geol 55(4):245–254CrossRefGoogle Scholar
  18. Wu Q, Zhou WF (2008b) Prediction of inflow from overlying aquifers into coalmines: a case study in Jinggezhuang Coalmine, Kailuan, China. Environ Geol 55(4):775–780CrossRefGoogle Scholar
  19. Wu SY, Hu BL, Yao DX, Zhang DS (2010) Analysis on geological structures influencing gas occurrence at Qidong coalmine. J Coal Sci Eng 16(3):292–295CrossRefGoogle Scholar
  20. Wu Q, Liu YZ, Liu DH, Zhou WF (2011) Prediction of floor water inrush: The application of GIS-Based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44:591–600CrossRefGoogle Scholar
  21. Wu Q, Fan ZL, Zhang ZW, Zhou WF (2014) Evaluation and zoning of groundwater hazards in Pingshuo No. 1 underground coal mine., Shanxi Province, China Hydrogeol J 22(7):1693–1705CrossRefGoogle Scholar
  22. Wu Q, Liu YZ, Luo LH, Liu SQ, Sun WJ, Zeng YF (2015) Quantitative evaluation and prediction of water inrush vulnerability from aquifers overlying coal seams in Donghuantuo coal mine, China. Environ Earth Sci 74:1429–1437CrossRefGoogle Scholar
  23. Wu Q, Xu K, Zhang W (2016) Further research on “three maps—two predictions” method for prediction on coal seam roof water bursting risk. J Chin Coal Soc 41(6):1341–1347Google Scholar
  24. Xu JL, Zhu WB, Wang XZ (2011) Study on water-inrush mechanism and prevention during coal mining under unconsolidated confined aquifer. J Min Saf Eng 28(3):333–339 (in Chinese) Google Scholar
  25. Xu JL, Zhu WB, Wang XZ (2012) New method to predict the height of fractured water-conducting zone by location of key strata. J Chin Coal Soc 37(5):762–769 (in Chinese) Google Scholar
  26. Yu BH (2009) Study on the hazard-formation mechanism of key strata compound breaking mining under unconsolidated confined aquifer with high water pressure. PhD Diss, China Univ of Mining and Technology (in Chinese) Google Scholar
  27. Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min 41:629–639CrossRefGoogle Scholar
  28. Zhang HQ, He YN, Tang CA, Ahmad B, Han LJ (2009) Application of an improved flow-stress-damage model to the criticality assessment of water inrush in a mine: a case study. Rock Mech Rock Eng 42(6):911–930CrossRefGoogle Scholar
  29. Zhang YX, Tu SH, Bai QS, Li JJ (2012) Overburden fissure evolution laws and water-controlling technologies in mining very thick coal seam under water-rich roof. Int J Min Sci Technol 23:693–700CrossRefGoogle Scholar
  30. Zhang JQ, Jiang HQ, Deng XJ, Ju F (2014) Prediction of the height of the water-conducting zone above the mined panel in solid backfill mining. Mine Water Environ 33:317–326CrossRefGoogle Scholar
  31. Zhang GM, Zhang K, Wang LJ, Wu Y (2015) Mechanism of water inrush and quicksand movement induced by a borehole and measures for prevention and remediation. B Eng Geol Environ 74(4):1395–1405CrossRefGoogle Scholar
  32. Zuo JP, Peng SP, Li YJ, Chen ZH, Xie HP (2009) Investigation of karst collapse based on 3-D seismic technique and DDA method at Xieqiao coal mine, China. Int J Coal Geol 78(4):276–286CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Luwang Chen
    • 1
  • Xiaoqing Feng
    • 2
  • Dongqing Xu
    • 1
  • Wen Zeng
    • 1
  • Zhiyuan Zheng
    • 1
  1. 1.School of Resources and Environmental EngineeringHefei University of TechnologyHefeiChina
  2. 2.Hebei Research Institute of Construction and Geotechnical Investigation Co., LtdShijiazhuangChina

Personalised recommendations