Design of a Geomembrane-Laminated Geosynthetic Clay Liner on the Slopes of a Mine Tailings Dam in Emet, Turkey

Technical Article
  • 29 Downloads

Abstract

We evaluated the potential use of a geomembrane-laminated geosynthetic clay liner (GCL) along the slopes of a boric acid tailings dam in Emet, Turkey. Even though a compacted clay liner (CCL) had been used at the bottom of the tailings dam, it was not possible to place a CCL along the slopes of the dam due to their steepness. Triaxial permeability tests were conducted on the base GCL without a geomembrane and the results indicated that although the volumetric flow through a cross section of the GCL was measured to be very low initially, it increased after a while due to the interaction of the bentonite in the GCL and the mine leachate. For this reason, using a geomembrane-laminated GCL along the steep slopes was found to be an appropriate solution. The mechanical properties of the barrier material were evaluated by performing a parametric study, including a slope stability analysis and an anchorage design for the geomembrane-laminated GCL. Based on the results, a geomembrane-laminated GCL with appropriate mechanical and hydraulic properties was chosen.

Keywords

Anchorage design Lining material Mine leachate Triaxial permeability test Slope stability analysis 

Planung einer geosynthetischen folieverstärkten Tondichtung für Böschungsbereiche einer bergbaulichen Absetzanlage in Emet, Türkei

Zusammenfassung

Bewertet wird der mögliche Einsatz einer geosynthetischen folieverstärkten Tondichtung (GCL) in Böschungsbereichen des Borsäure-Schlammteiches von Emet, Türkei. Im Gegensatz zur Aufstandsfläche des Schlammteiches, die mit einer mineralischen Abdichtung (CCL) versehen wurde, gelang es auf deren Böschungen aufgrund zu steiler Neigungen nicht, eine ebensolche Abdeckung einzubauen. An der mineralischen Basisabdichtung durchgeführte Triaxialtests zeigten, dass sich deren anfänglich geringe Durchflussmengen nach einer gewissen Zeit erhöhten, was auf die Alteration des Bentonits unter Sickerwassereinfluss zurückgeführt wird. Daher erschien die Verwendung einer folieverstärkten Tondichtung in den Böschungsbereichen als geeignete Lösung. Die mechanischen Eigenschaften der Barrierematerialien wurden mittels Parameterstudie bewertet, welche eine Standsicherheitsanalyse sowie eine Einbaurichtlinie für die geosynthetische folieverstärkte Tondichtung (GCL) einschließt. Auf Grundlage der hierbei erzielten Ergebnisse wurde eine GCL mit hinreichenden mechanischen und hydraulischen Eigenschaften ausgewählt.

Diseño de un revestimiento de arcilla geosintética laminado con geomembrana en las laderas de un dique de relaves en Emet, Turquía

Resumen

Evaluamos el potencial uso de un revestimiento de arcilla geosintético laminado con geomembrana (GCL) a lo largo de las laderas de un dique de relaves de ácido bórico en Emet, Turquía. A pesar de que se había utilizado un revestimiento de arcilla compactada (CCL) en el fondo de la presa de relaves, no fue posible colocar un CCL a lo largo de las laderas de la presa debido a su inclinación. Se realizaron pruebas de permeabilidad triaxial en GCL sin geomembrana y los resultados indicaron que aunque el flujo volumétrico a través de una sección transversal de GCL se midió inicialmente como muy bajo, aumentó después de un tiempo debido a la interacción de la bentonita en el GCL y el lixiviado de la mina. Por esta razón, el uso de GCL laminado con geomembrana a lo largo de las pendientes pronunciadas era una solución apropiada. Las propiedades mecánicas del material de barrera se evaluaron mediante la realización de un estudio paramétrico, que incluye un análisis de estabilidad de taludes y un diseño de anclaje para GCL laminado con geomembrana. En base a los resultados, se eligió un GCL laminado con geomembrana con propiedades mecánicas e hidráulicas adecuadas.

Emet(土耳其)尾矿坝坡面的多层土工膜膨润土垫层设计

抽象

评价了沿Emet(土耳其)硼酸尾矿坝坡面铺设多层土工膜膨润土垫层(GCL)的可行性。虽然尾矿坝底已经铺设夯实粘土层(CCL),但急倾斜坡面无法使用CCL。试验了膨润土垫层(GCL)的三轴渗透性能;结果显示,虽然穿过GCL断面的初始容积流很小,但GCL中斑脱土与淋滤液的反应却使容积流很快增大。发现多层土工膜膨润土垫层(GCL)为较好的解决方法。通过坡体稳定性分析和多层土工膜膨润土垫层(GCL)锚固设计,评价了防渗材料的力学性质。据此,确定了多层土工膜膨润土垫层(GCL)的合理力学和水力学性质参数。

Notes

Acknowledgements

The authors appreciate the support provided by Eti Maden İsletmeleri Genel Mudurlugu. The authors also sincerely thank Prof. Dr. Cem Avci from Bogazici University Civil Engineering Department for making recommendations about the proposed geomembrane-laminated GCL.

Supplementary material

10230_2018_538_MOESM1_ESM.tif (8.8 mb)
Supplementary material 1 (TIF 9006 KB)
10230_2018_538_MOESM2_ESM.tif (2.5 mb)
Supplementary material 2 (TIF 2547 KB)
10230_2018_538_MOESM3_ESM.tif (5.1 mb)
Supplementary material 3 (TIF 5210 KB)
10230_2018_538_MOESM4_ESM.tif (4.4 mb)
Supplementary material 4 (TIF 4535 KB)

References

  1. ASTM D2435 (2011) Standard test methods for one-dimensional consolidation properties of soils using incremental loading: ASTM International, West ConshohockenGoogle Scholar
  2. ASTM D4595 (2011) Standard test method for tensile properties of geotextiles by the wide-width strip method: ASTM International, West ConshohockenGoogle Scholar
  3. ASTM D4632 (2015) Standard test method for grab breaking load and elongation of geotextiles: ASTM International, West ConshohockenGoogle Scholar
  4. ASTM D4751 (2016) Standard test method for determining apparent opening size of a geotextile: ASTM International, West ConshohockenGoogle Scholar
  5. ASTM D5261 (2010) Standard test method for measuring mass per unit area of geotextiles: ASTM International, West ConshohockenGoogle Scholar
  6. ASTM D5890 (2011) Standard test method for swell index of clay mineral component of geosynthetic clay liners, West ConshohockenGoogle Scholar
  7. ASTM D5993 (2014) Standard test method for measuring mass per unit of geosynthetic clay liners: ASTM International, West ConshohockenGoogle Scholar
  8. ASTM D5994 (2015) Standard test method for measuring core thickness of textured geomembranes: ASTM International, West ConshohockenGoogle Scholar
  9. ASTM D6496 (2015) Standard test method for determining average bonding peel strength between top and bottom layers of needle-punched geosynthetic clay liners: ASTM International, West ConshohockenGoogle Scholar
  10. ASTM D6528 (2007) Standard test method for consolidated undrained direct simple shear testing of cohesive soils: ASTM International, West ConshohockenGoogle Scholar
  11. ASTM D6766 (2012) Standard test Method for evaluation of hydraulic properties of geosynthetic clay liners permeated with potentially incompatible aqueous solutions: ASTM International, West ConshohockenGoogle Scholar
  12. Benson CH, Meer SR (2009) Relative abundance of monovalent and divalent cations and the impact of desiccation on geosynthetic clay liners. J Geotech Geoenviron Eng 135(3):349–358CrossRefGoogle Scholar
  13. Bouazza A (2002) Geosynthetic clay liners. Geotext Geomembr 20(1):3–17CrossRefGoogle Scholar
  14. Bouazza A, Gates WP (2014) Overview of performance compatibility issues of GCLs with respect to leachates of extreme chemistry. Geosynth Int 21(2):151–167CrossRefGoogle Scholar
  15. Capper PL, Cassie WF (1976) The mechanics of engineering soils, 6th edit. Halsted Press, New York CityGoogle Scholar
  16. Eid HT (2011) Shear strength of geosynthetic composite systems for design of landfill liner and cover slopes. Geotext Geomembr 29:335–344CrossRefGoogle Scholar
  17. El-Zein A, Rowe RK (2008) Impact on groundwater of concurrent leakage and diffusion of DCM through geomembranes in landfill liners. Geosynth Int 15(1):55–71CrossRefGoogle Scholar
  18. Gruber J (2008) Stability failure of an mse during a flood and its reconstruction thereafter. Proc, 1st Pan American Geosynthetic Conf, Cancun, Mexico, 768–772Google Scholar
  19. Guler E, Avci C, Ozhan HO (2006) Eti Maden İşletmeleri Genel Müdürlüğü, Project Report for Barrier Material for the Tailings Dam of Boric Acid Plant in EmetGoogle Scholar
  20. Heibaum M (2014) Geosynthetics for waterways and flood protection structures-controlling the interaction of water and soil. Geotext Geomembr 42:374–393CrossRefGoogle Scholar
  21. Hornsey WP, Scheirs J, Gates WP, Bouazza A (2010) The impact of mining solutions/ liquors on geosynthetics. Geotext Geomembr 28(2):191–198CrossRefGoogle Scholar
  22. Hullings DE, Sansone LJ (1997) Design concerns and performance of geomembrane anchor trenches. Geotext Geomembr 15(4–6):403–417CrossRefGoogle Scholar
  23. Ishimori H, Katsumi T (2012) Temperature effects on the swelling capacity and barrier performance of geosynthetic clay liners permeated with sodium chloride solutions. Geotext Geomembr 33:25–33CrossRefGoogle Scholar
  24. Jozefaciuk G, Matyka-Sarzynska D (2006) Effect of acid treatment and alkali treatment on nanopore properties of selected minerals. Clays Clay Miner 54(2):220–229CrossRefGoogle Scholar
  25. Kang JB, Shackelford CD (2010) Consolidation of a geosynthetic clay liner under isotropic states of stres. J Geotech Geoenviron Eng 136(1):253–259CrossRefGoogle Scholar
  26. Katsumi T, Onikata M, Hasegawa S, Lin LC, Kondo M, Kamon M (2001) Chemical compatibility of modified bentonite permeated with inorganic chemical solutions. Geoenvironmental Impact Management. Thomas Telford, Geoenvironmental Engineering, Slough, UK, pp 419–424Google Scholar
  27. Kelessidis VC, Tsamantaki C, Dalamarinis P (2007) Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Appl Clay Sci 38(1–2):86–96CrossRefGoogle Scholar
  28. Koerner RM (2005) Designing with geosynthetics, 5th edit. Prentice Hall, Upper Saddle RiverGoogle Scholar
  29. Koerner RM, Daniel DE (1995) A suggested methodology for assessing the technical equivalency of GCLs to CCLs. In: Koerner RM, Gartung E, Zanzinger H (eds) Geosynthetic clay liners. Balkema, Rotterdam, pp 73–98Google Scholar
  30. Lajevardi SH, Briancon L, Dias D (2014) Experimental studies of the geosynthetic anchorage-effect of geometric parameters and efficiency of anchorages. Geotext Geomembr 42:505–514CrossRefGoogle Scholar
  31. Lee JM, Shackelford CD (2005) Concentration dependency of the prehydration effect for a geosynthetic clay liner. Soils Found 45(4):27–41CrossRefGoogle Scholar
  32. Liu Y, Gates WP, Bouazza A (2013) Acid induced degradation of the bentonite component used in geosynthetic clay liners. Geotext Geomembr 36(2–4):71–80CrossRefGoogle Scholar
  33. Liu Y, Bouazza A, Gates WP, Rowe RK (2015) Hydraulic performance of geosynthetic clay Liners to sulfuric acid solutions. Geotext Geomembr 43:14–23CrossRefGoogle Scholar
  34. Lupo JF, Morrison KF (2007) Geosynthetic design and construction approaches in the mining industry. Geotext Geomembr 25:96–108CrossRefGoogle Scholar
  35. Mazzieri F, Di Emidio G, Fratalocchi E, Di Sante M, Pasqualini E (2013) Permeation of two GCLs with an acidic metal-rich synthetic leachate. Geotext Geomembr 40:1–11CrossRefGoogle Scholar
  36. Meer SR, Benson CH (2007) Hydraulic conductivity of geosynthetic clay liners exhumed from landfill final covers. J Geotech Geoenviron Eng 133(5):550–563CrossRefGoogle Scholar
  37. Mendes MJA, Touze-Foltz N, Palmeira EM, Pierson P (2010) Influence of structural and material properties of GCLs on interface flow in composite liners due to geomembrane effects. Geosynth Int 17(1):34–47CrossRefGoogle Scholar
  38. Ozhan HO, Guler E (2013) Use of perforated base pedestal to simulate the gravel subbase in evaluating the internal erosion of geosynthetic clay liners. Geotech Test J 36(3):418–428CrossRefGoogle Scholar
  39. Ozhan HO, Guler E (2016) Factors affecting failure by internal erosion of geosynthetic clay liners used in fresh water reservoirs. Environ Eng Geosci 22(2):157–169CrossRefGoogle Scholar
  40. Rossin-Poumier S, Touze-Foltz N, Pantet A (2011) Impact of synthetic leachate and permittivity of GCLs measured by filter press and oedopermeameter. Geotext Geomembr 29(3):211–221CrossRefGoogle Scholar
  41. Rowe RK (2005) Long-term performance of contaminant barrier Systems. 45th Rankine Lecture Geotech 55(9):631–678Google Scholar
  42. Rowe RK, Abdelatty K (2012) Effect of a calcium-rich soil on the performance of an overlying GCL. J Geotech Geoenviron Eng 138(4):423–431CrossRefGoogle Scholar
  43. Shackelford CD, Sevick GW, Eykholt GR (2010) Hydraulic conductivity of geosynthetic clay liners to tailings impoundment solutions. Geotext Geomembr 28(2):149–162CrossRefGoogle Scholar
  44. Shan H-Y, Lai Y-J (2002) Effect of hydrating liquid on the hydraulic properties of geosynthetic clay liners. Geotext Geomembr 20(1):19–38CrossRefGoogle Scholar
  45. Simpson BE (2000) Evaluation of leachate compatibility to clay soil for three geosynthetic clay liner products. Proc, Advances in Transportation and Geoenvironmental Systems using Geosynthetics. GSP 103, ASCE, Reston, pp 117–128CrossRefGoogle Scholar
  46. Vangpaisal T, Bouazza A (2004) Gas permeability of partially hydrated geosynthetic clay liners. J Geotech Geoenviron Eng 130(1):93–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Civil EngineeringAltınbaş UniversityIstanbulTurkey
  2. 2.Department of Civil EngineeringBogazici UniversityIstanbulTurkey

Personalised recommendations