Concurrent Mining During Construction and Water-Filling of a Goaf Groundwater Reservoir in a Coal Mine

  • Pan Li
  • Liqiang Ma
  • Yu Wu
  • Liqiang Zhang
  • Yang Hao
Technical Article


Coal mining has aggravated water scarcity in the arid areas of northwestern China. Concurrent aquifer drainage, mining, and water storage is proposed, using a goaf groundwater reservoir (GGWR) to preserve the area’s fragile ecosystem. By continuously draining the overlying aquifer of the working face and simultaneously storing water in the goaf while the working face is mined, this technology can maintain the storage capacity of the GGWR without jeopardizing mine safety. The drainage process was simulated, based on mining conditions of the 11201 working face in the Yuandatan coal mine, to investigate how water pressure variations in the overlying aquifer would affect GGWR construction. Then, two drainage borehole arrangements were simulated. The research demonstrated that the resulting drainage intensity would enable continuous operation of “aquifer drainage-coal mining-water storage”, and that the design satisfies the in-situ drainage and storage requirements. Therefore, concurrent construction and water-filling of the GGWR is feasible.


Aquifer drainage Mine water Borehole Mine safety 

Abbau bei gleichzeitiger Entstehung und Auffüllung eines Grundwasserkörpers im Alten Mann


Der Kohlenbergbau hat den Wassermangel in den ariden Bereichen Nordchinas verschärft. Parallel sind die Entwässerung des Grundwasserkörpers, der Abbau und die Wasserspeicherung unter Verwendung des Alten Mannes als Grundwasserreservoir (GGWR) zur Schonung des fragilen Ökosystems des Gebiets geplant. Durch kontinuierliche Entwässerung des hangenden Aquifers über der Abbaufront und gleichzeitige Speicherung der gewonnen Wässer im Alten Mann während die Abbaufront vorangetrieben wird, kann diese Vorgangsweise die Speicherkapazität des GGWR erhalten ohne die Sicherheit beim Abbau zu gefährden. Der Entwässerungsprozess wurde auf Basis der Bedingungen des Abbaus 11201 in der Yuandatan Kohlengrube nachgebildet, um zu untersuchen wie Wasserdruckveränderungen im hangenden Aquifer die Entstehung des GGWR beeinflusst. Dann wurden zwei Entwässerungsbohrlochanordnungen simuliert. Die Untersuchung zeigte dass die sich ergebende Entwässerungsintensität den kontinuierlichen Betrieb des Systems „Aquiferentwässerung – Kohlenabbau – Wasserspeicherung“ ermöglicht und die Auslegung die in-situ Entwässerungs- und Speichererfordernisse erfüllt. Daher ist die gleichzeitige Nutzung des alten Mannes als GGWR während des Abbaubetriebes möglich.

Minería concurrente durante la construcción y llenado de agua de un depósito de agua subterránea en una mina de carbón


La minería del carbón ha agravado la escasez de agua en las áreas áridas del noroeste de China. Se propone el drenaje concurrente del acuífero, la extracción y el almacenamiento de agua, utilizando un reservorio de aguas subterráneas (GGWR) para preservar el frágil ecosistema del área. Por drenaje continuo del acuífero que cubre la cara de trabajo y el almacenamiento simultáneo de agua en el pozo durante el trabajo minero, esta tecnología puede mantener la capacidad de almacenamiento del GGWR sin afectar la seguridad de la mina. El proceso de drenaje fue simulado, basado en las condiciones mineras de la cara de trabajo 11201 en la mina de carbón de Yuandatan, para investigar cómo las variaciones de presión del agua en el acuífero suprayacente afectarían la construcción del GGWR. Luego, se simularon dos arreglos de pozo de drenaje. La investigación demostró que la intensidad de drenaje resultante permitiría una operación continua de "drenaje de acuíferos-extracción de carbón-almacenamiento de agua", y que el diseño satisface los requisitos de drenaje y almacenamiento in situ. Por lo tanto, la construcción simultánea y el llenado de agua del GGWR es factible.





This work was financed by the National Natural Science Foundation of China with grant 51674247. The authors furthermore thank the anonymous reviewers and related editors who have significantly enhanced the quality of this paper.

Supplementary material

10230_2018_537_MOESM1_ESM.pdf (23 kb)
Supplementary Fig. 1 Boundary and initial conditions of the models (PDF 22 KB)
10230_2018_537_MOESM2_ESM.pdf (15.6 mb)
Supplementary Fig. 2 Water pressure distribution before the damage of the aquifer is shown at different drainage time (a 1 day, b 3 days, c 7 days, d 11 days) (PDF 15932 KB)
10230_2018_537_MOESM3_ESM.pdf (13.4 mb)
Supplementary material 3 (PDF 13725 KB)
10230_2018_537_MOESM4_ESM.pdf (12 mb)
Supplementary material 4 (PDF 12287 KB)
10230_2018_537_MOESM5_ESM.pdf (10.7 mb)
Supplementary material 5 (PDF 10966 KB)
10230_2018_537_MOESM6_ESM.pdf (16.8 mb)
Supplementary Fig. 3 Water pressure distribution after the damage of the aquifer is shown at different drainage time (a 1 day, b 3 days, c 7 days, d 11 days) (PDF 17231 KB)
10230_2018_537_MOESM7_ESM.pdf (13.6 mb)
Supplementary material 7 (PDF 13945 KB)
10230_2018_537_MOESM8_ESM.pdf (11 mb)
Supplementary material 8 (PDF 11219 KB)
10230_2018_537_MOESM9_ESM.pdf (8.9 mb)
Supplementary material 9 (PDF 9081 KB)
10230_2018_537_MOESM10_ESM.pdf (8.9 mb)
Supplementary material 10 (PDF 9081 KB)
10230_2018_537_MOESM11_ESM.docx (18 kb)
Supplementary material 11 (DOCX 17 KB)


  1. Andrés C, Ordóñez A, Álvarez R (2017) Hydraulic and thermal modelling of an underground mining reservoir. Mine Water Environ 36:24–33CrossRefGoogle Scholar
  2. Bhattacharya AK (2010) Artificial ground water recharge with a special reference to India. Int J Res Rev Appl Sci 4:214–221Google Scholar
  3. Bian ZF, Lei SG, Inyang HI, Chang LQ, Zhang RC, Zhou CJ, He X (2009) Integrated method of RS and GPR for monitoring the changes in the soil moisture and groundwater environment due to underground coal mining. Environ Geol 57:131–142CrossRefGoogle Scholar
  4. Brothers K, Katzer T (1990) Water banking through artificial recharge, Las Vegas Valley, Clark County, Nevada. J Hydrol 115:77–103CrossRefGoogle Scholar
  5. Cao ZG, He RM, Wang XF (2014) Coal mining affected to underground water and underground water storage and utilization technology. Coal Sci Technol 42:113–116, 128 (Chinese) Google Scholar
  6. Chen SS, Ju JF (2011) Utilization technology of mine water resources in Daliuta mine. Coal Sci Technol 39:125–128 (Chinese) Google Scholar
  7. Chen SS, Huang QX, Xue G, Li RQ (2016) Technology of underground reservoir construction and water resource utilization in Daliuta coal mine. Coal Sci Technol 44:21–28 (Chinese) Google Scholar
  8. Deng MJ (2012) Ground reservoir: a new pattern of groundwater utilization in arid north-west China—a case study in Tailan river basin. Proced Environ Sci 13:2210–2221CrossRefGoogle Scholar
  9. Deng MJ, Li WP, Li T, Shu LC (2014) Investigation of key technologies for underground water storage structures and groundwater reservoirs in Xinjiang. Quat Sci 34:918–932 (Chinese) Google Scholar
  10. Dong SN (2016) Assessment of coal mining impact on water resources. In: Hawkins E (ed) Study on the optimal allocation of water resources systems and the comprehensive utilization of water resources in arid-semiarid multiple mining areas. Springer, Cham, pp 149–169Google Scholar
  11. Gao JE, He HT (2010) Application of fully mechanized full seam one passing mining technology to thick seam in Shendong mining area. J Chin Coal Soc 35:1888–1892 (Chinese) Google Scholar
  12. Ghanem M, Marei A, Hoetzl H, Wolf L, Ali W, Assi A (2011) Assessment of artificial recharge test in Jeftlik Faria area, West Bank. J Water Resour Protect 03:186–191CrossRefGoogle Scholar
  13. Gu DZ (2013) Water resource and surface ecology protection technology of modern coal mining in China’s energy “Golden Triangle”. Eng Sci 15:102–107 (Chinese) Google Scholar
  14. Gu DZ (2015) Theory framework and technological system of coal mine underground reservoir. J Chin Coal Soc 40:239–246 (Chinese) Google Scholar
  15. Gu DZ, Yan YG, Zhang Y, Wang EZ, Cao ZG (2016a) Experimental study and numerical simulation for dynamic response of coal pillars in coal mine underground reservoir. J Chin Coal Soc 41:1589–1597 (Chinese) Google Scholar
  16. Gu DZ, Zhang Y, Cao ZG (2016b) Technical progress of water resource protection and utilization by coal mining in China. Coal Sci Technol 44:1–7 (Chinese) Google Scholar
  17. He XW, Yang J, Shao LN, LI FQ, Wang XC (2008) Problem and countermeasure of mine water resource regeneration in China. J Chin Coal Soc 33:63–66 (Chinese) Google Scholar
  18. Howladar MF (2013) Coal mining impacts on water environs around the Barapukuria coal mining area, Dinajpur, Bangladesh. Environ Earth Sci 70:215–226CrossRefGoogle Scholar
  19. Jardon S, Ordonez A, Alvarez R, Cienfuegos P, Loredo J (2013) Mine water for energy and water supply in the Central Coal Basin of Asturias (Spain). Mine Water Environ 32:139–151CrossRefGoogle Scholar
  20. Ju JF, Xu JL, Zhu WB (2017) Storage capacity of underground reservoir in the Chinese western water-short coalfield. J Chin Coal Soc 42:381–387 (Chinese) Google Scholar
  21. Kulshreshtha SN (1998) A global outlook for water resources to the year 2025. Water Resour Manag 12:167–184CrossRefGoogle Scholar
  22. Li GY, Zhou WF (2006) Impact of karst water on coal mining in North China. Environ Geol 49:449–457CrossRefGoogle Scholar
  23. Li WL, Shu LC, Yin ZZ (2006) Concept and design theory of groundwater reservoir. J Hydraul Eng 37:613–618 (Chinese) Google Scholar
  24. Li WP, Li T, Chen W, Chang JY, Wang QQ (2014) Goaf water storage—a new way for water preserved mining in arid areas. J Eng Geol 22:1003–1007 (Chinese) Google Scholar
  25. Ma LQ, Zhang DS, Li X, Fan GW, Zhao YF (2009) Technology of groundwater reservoir construction in goafs of shallow coalfields. Min Sci Technol 19:730–735Google Scholar
  26. Mark C (2016) Science of empirical design in mining ground control. Int J Min Sci Technol 26:461–470CrossRefGoogle Scholar
  27. Miao XX, Wang A, Sun YJ, Wang LG, Pu H (2009) Research on basic theory of mining with water resources protection and its application to arid and semi-arid mining areas. Chinese J Rock Mech Eng 28:217–227 (Chinese) Google Scholar
  28. Ordonez A, Jardon S, Alvarez R, Andres C, Pendas F (2012) Hydrogeological definition and applicability of abandoned coal mines as water reservoirs. J Environ Monit 14:2127–2136CrossRefGoogle Scholar
  29. Paudyal GN, Gupta AD (1987) Operation of a groundwater reservoir in conjunction with surface water. Int J Water Resour Dev 3:31–43CrossRefGoogle Scholar
  30. Qiao W, Li WP, Li T, Chang JY, Wang QQ (2016) Effects of coal mining on shallow water resources in semiarid regions: a case study in the Shennan mining area, Shaanxi, China. Mine Water Environ 36:104–113CrossRefGoogle Scholar
  31. Raju NJ, Reddy TVK, Muniratnam P, Gossel W, Wycisk P (2013) Managed aquifer recharge (MAR) by the construction of subsurface dams in the semi-arid regions: a case study of the Kalangi river basin, Andhra Pradesh. J Geol Soc India 82:657–665CrossRefGoogle Scholar
  32. Samadder RK, Kumar S, Gupta RP (2011) Paleochannels and their potential for artificial groundwater recharge in the western Ganga plains. J Hydrol 400:154–164CrossRefGoogle Scholar
  33. Sheng ZP (2005) An aquifer storage and recovery system with reclaimed wastewater to preserve native groundwater resources in El Paso, Texas. J Environ Manag 75:367–377CrossRefGoogle Scholar
  34. Sun WJ, Zhou WF, Jiao J (2016) Hydrogeological classification and water inrush accidents in China’s coal mines. Mine Water Environ 35:214–220CrossRefGoogle Scholar
  35. Wu YQ (2009) Geohydraulics. Science Press Co. Ltd, Beijing (Chinese) Google Scholar
  36. Wu YQ (2012) Mathematical method of flow and contaminant transport in porous media. Science Press Co. Ltd, Beijing (Chinese) Google Scholar
  37. Wu YS, Zhang W, Pan LH, Hinds J, Bodvarsson GS (2002) Modeling capillary barriers in unsaturated fractured rock. Water Resour Res 38:35-1–35-12Google Scholar
  38. Wu YS, Lu GP, Zhang K, Pan LH, Bodvarsson GS (2007) Analyzing unsaturated flow patterns in fractured rock using an integrated modeling approach. Hydrogeol J 15:553–572CrossRefGoogle Scholar
  39. Wu Q, Cui FB, Zhao SQ, Liu SQ, Zeng YF, Gu YW (2013) Type classification and main characteristics of mine water disasters. J Chin Coal Soc 38:561–565 (Chinese) Google Scholar
  40. Xie HP, Hou ZM, Gao F, Zhou L, Gao YN (2015) A new technology of pumped-storage power in underground coal mine: principles, present situation and future. J Chin Coal Soc 40:965–972 (Chinese) Google Scholar
  41. Yang H, Flower RJ, Thompson JR (2013) Sustaining China’s water resources. Science 339:141–141CrossRefGoogle Scholar
  42. Zeman C, Rich M, Rose J (2006) World water resources: trends, challenges, and solutions. Rev Environ Sci Bio 5:333–346CrossRefGoogle Scholar
  43. Zhang JC, Peng SP (2005) Water inrush and environmental impact of shallow seam mining. Environ Geol 48:1068–1076CrossRefGoogle Scholar
  44. Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min 41:629–639CrossRefGoogle Scholar
  45. Zhang DS, Fan GW, Ma LQ, Wang XF (2011) Aquifer protection during longwall mining of shallow coal seams: a case study in the Shendong coalfield of China. Int J Coal Geol 86:190–196CrossRefGoogle Scholar
  46. Zhang JX, Jiang HQ, Deng XJ, Ju F (2014) Prediction of the height of the water-conducting zone above the mined panel in solid backfill mining. Mine Water Environ 33:317–326CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Pan Li
    • 1
  • Liqiang Ma
    • 2
    • 3
  • Yu Wu
    • 1
  • Liqiang Zhang
    • 1
  • Yang Hao
    • 1
  1. 1.State Key Laboratory for Geomechanics and Deep Underground EngineeringChina University of Mining and Technology (CUMT)XuzhouChina
  2. 2.School of MinesCUMTXuzhouChina
  3. 3.Key Laboratory of Deep Coal Resource MiningMinistry of Education of ChinaXuzhouChina

Personalised recommendations