Advertisement

Mine Water and the Environment

, Volume 37, Issue 2, pp 263–271 | Cite as

Effects of Coalbed Methane Co-produced Water for Irrigation in China’s Qinshui Basin: An Experimental Field Study

  • Xiangdong Li
  • Bo Fei
  • Qiyan Feng
  • Lai Zhou
  • Yue Sun
Technical Article

Abstract

The management of coalbed methane (CBM) co-produced waters (hereafter refer to as produced water) has broad effects on the native plants and soils in the Qinshui Basin of China and has become a high priority over the past decade. To investigate the short-term effects of produced water on crop production and soil health, a field study was conducted in the Shizhuang Block, which is one of the most active CBM-producing areas in the Qinshui Basin. Spring maize was grown during 2015 under the following flood irrigation treatments: freshwater (as a control), and three produced water sub-treatments with electrical conductivity (EC) values of 1.9 ± 0.9, 2.3 ± 0.5, and 3.4 ± 1.1 ds/m. The SAR concentration of the produced water ranged from 17.62 to 44.45 meq/L; the excessive SAR content makes the water unsuitable for direct irrigation without amendment. The pH, SAR, and constituent concentration of soil samples and crop yield were tested before planting and after harvest, while the soil moisture and plant height were measured monthly from June to October. The growth parameters indicated that salinity decreased total crop yield and individual plant height. The monitored soil indexes showed that the SAR content at a depth of 20 cm (top soil) exceeded that at 40 cm, and increased as the EC of the irrigation source increased at both depths. However, there were no obvious differences in pH or chemical composition of the soil samples, all being less than the Republic of China’s soil pollution standards. Soil moisture was determined more by the monsoon climate than by changes in the soils’ hydraulic properties.

Keywords

Soil property Crop performance Salinity SAR 

沁水盆地煤层气田产出水灌溉环境效应试验研究

摘要

由于煤层气田产出水的直接排放对受纳水体、土壤和植物具有潜在的环境危害,所以对煤层气田产出水的处理处置受到政府和公众的广泛关注。为了研究煤层气田产出水灌溉对农作物品质和土壤质量的短期影响,2015年在沁水盆地的柿庄区块进行了为期一年的玉米种植试验,分别以淡水(作为对照)和三个不同电导率(EC)值的煤层气田产出水(1.9±0.9,2.3±0.5和3.4±1.1ds / m)为灌溉水源。柿庄区块煤层气田产出水的钠吸附比(SAR)浓度范围为17.62至44.45meq / L,不适合直接作为灌溉水源。测试灌溉期前后土壤样品的pH,SAR和Zn、As、Cd、Cu、Fe、Mn和Pb元素浓度,结果表明表层土壤(深度为20厘米)的SAR值大于深层土壤(深度为40厘米),而且与灌溉水源的电导率值正相关。但是,不同深度和灌溉水源的土壤样品中pH值或化学成分不存在明显差异,均低于中华人民共和国的土壤污染标准。6月至10月期间每月测量土壤含水率和农作物高度,最终收获后测定农作物产量。结果表明,季风气候对土壤含水量率的影响要大于对煤层气产出水灌溉对土壤水力特性的影响,产出水的高盐度降低了农作物产量和单株株高。

Auswirkungen von bei der Flözgasproduktion anfallendem Wasser auf die Bewässerung in Chinas Qinshui-Becken: Eine experimentelle Feldstudie

Zusammenfassung

Der Umgang mit im Zuge der Produktion von Flözgas (eng: coalbed methane, CBM) anfallendem Wasser (im Folgenden als „produziertes Wasser“ bezeichnet) hat weitreichende Auswirkungen auf die heimischen Pflanzen und Böden im chinesischen Qinshui-Becken und hat im Laufe des letzten Jahrzehnts an großer Bedeutung gewonnen. Um die kurzfristigen Auswirkungen von produziertem Wasser auf den Pflanzenanbau und die Bodenqualität zu untersuchen, wurde im Shizhuang Block, einer der aktivsten CBM-produzierenden Gegenden im Qinshui-Becken, eine Feldstudie durchgeführt. Seit 2015 wurde Frühjahrsmais unter den folgenden Bewässerungsbedingungen angepflanzt: Frischwasser (zur Kontrolle) sowie drei Untergruppen mit produziertem Wasser mit einer Leitfähigkeit von 1,9±0,9, 2,3±0,5 und 3,4±1,1 ds/m. Der Natrium-Adsorptionswert (eng. Sodium Adsorption Ratio, SAR) bewegte sich im Bereich zwischen 17,62 und 44,45 meq/L, wobei die übermäßige SAR-Konzentration das Wasser ohne Verbesserung für direkte Bewässerung unbrauchbar macht. Der pH-Wert, SAR und Stoffkonzentrationen von Bodenproben und Ernteertrag wurden vor der Aussaat und nach der Ernte untersucht. Zusätzlich erfolgte eine monatliche Messung von Bodenfeuchte und Pflanzenwuchshöhe zwischen Juni und Oktober. Die Wachstumsparameter weisen darauf hin, dass die Salinität sowohl den Ernteertrag als auch die Wuchshöhe von Einzelpflanzen verringert. Die untersuchten Bodenkennwerte zeigen, dass die SAR-Konzentration in 20 cm Bodentiefe (Oberboden) deutlich höher lag als in 40 cm und in beiden Tiefen mit ansteigender Leitfähigkeit der Bewässerung anstieg. Demgegenüber gab es keine deutlichen Unterschiede in pH-Wert oder chemischer Zusammensetzung der Bodenproben, die vollständig unterhalb der Bodengrenzwerte der Volksrepublik China liegen. Die Bodenfeuchte wurde stärker durch das Monsunklima bestimmt als durch Änderungen der hydraulischen Bodeneigenschaften.

Efectos del agua coproducida con metano en capas carboníferas para irrigación en la cuenca Qinshui de China: un estudio de campo experimental

Resumen

El manejo de aguas coproducidas con metano de capas carbonífersas (CBM) (en lo sucesivo, agua producida) tiene amplios efectos en las plantas y suelos nativos en la cuenca Qinshui de China y se ha convertido en una prioridad en la última década. Para investigar los efectos a corto plazo del agua producida en la producción de cultivos y la salud del suelo, se realizó un estudio de campo en el Bloque Shizhuang, que es una de las áreas más activas de producción de CBM en la cuenca Qinshui. El maíz de primavera se cultivó durante 2015 bajo los siguientes tratamientos de riego por inundación: agua dulce (como control) y tres subtratamientos de agua producidos con valores de conductividad eléctrica (EC) de 1,9 ± 0,9, 2,3 ± 0,5 y 3,4 ± 1,1 ds/m . La concentración SAR del agua producida varió de 17,62 a 44,45 meq/L; el contenido excesivo de SAR hace que el agua no sea apta para el riego directo sin modificaciones. El pH, SAR y la concentración de constituyentes de las muestras de suelo y el rendimiento de los cultivos se probaron antes de la siembra y después de la cosecha, mientras que la humedad del suelo y la altura de la planta se midieron mensualmente de junio a octubre. Los parámetros de crecimiento indicaron que la salinidad disminuyó el rendimiento total del cultivo y la altura de la planta individual. Los índices de suelo que se monitorearon mostraron que el contenido de SAR a una profundidad de 20 cm (suelo superior) excedía al de 40 cm y aumentaba a medida que la EC de la fuente de riego aumentaba a ambas profundidades. Sin embargo, no hubo diferencias obvias en el pH o la composición química de las muestras de suelo, siendo todas ellas menores que las que indican las normas para suelo de la República de China. La humedad del suelo fue determinada más por el clima del monzón que por los cambios en las propiedades hidráulicas de los suelos.

Notes

Acknowledgements

This study was financially supported by the National Science and Technology Major Project (No. 2011ZX05060-005) and National Natural Science Foundation of China (No.41572218).

Supplementary material

10230_2018_536_MOESM1_ESM.docx (13 kb)
Supplementary material 1 (DOCX 13 KB)
10230_2018_536_MOESM2_ESM.docx (14 kb)
Supplementary material 2 (DOCX 14 KB)
10230_2018_536_MOESM3_ESM.pdf (402 kb)
Supplementary material 3 (PDF 402 KB)
10230_2018_536_MOESM4_ESM.pdf (37 kb)
Supplementary material 4 (PDF 36 KB)
10230_2018_536_MOESM5_ESM.pdf (35 kb)
Supplementary material 5 (PDF 35 KB)

References

  1. Bao Y, Wei C, Wang C, Li L, Sun Y (2013) Geochemical characteristics and identification of thermogenic CBM generated during the low and middle coalification stages. Geochem J 47(4):451–458CrossRefGoogle Scholar
  2. Bao Y, Wei C, Wang C, Wang G, Li Q (2014) Geochemical characteristics and generation process of mixed biogenic and thermogenic coalbed methane in Luling coalfield, China. Energy Fuels 28(7):4392–4401CrossRefGoogle Scholar
  3. Bardhan G, Russo D, Goldstein D, Levy GJ (2016) Changes in the hydraulic properties of a clay soil under long-term irrigation with treated wastewater. Geoderma 264:1–9CrossRefGoogle Scholar
  4. Bergquist E (2003). Vegetative survey quantifying the effects of large-scale coalbed methane development on native and non-native flora in the Powder River Basin, Wyoming. MS Thesis, Dept of Natural Resource Ecology, Colorado State Univ, Fort CollinsGoogle Scholar
  5. Bern CR, Boehlke AR, Engle MA, Geboy NJ, Schroeder KT, Zupancic JW (2013) Shallow groundwater and soil chemistry response to 3 years of subsurface drip irrigation using coalbed-methane-produced water. Hydrogeol J 21(8):1803–1820CrossRefGoogle Scholar
  6. Boysen DB, Boysen JE, Boysen JA (2002) Creative strategies for produced water disposal in the Rocky Mountain region. Proc, 9th International Petroleum Environmental Conf, pp 1–15Google Scholar
  7. Brinck EL, Drever JI, Frost CD (2008) The geochemical evolution of water coproduced with coalbed natural gas in the Powder River Basin, Wyoming. Environ Geosci 15(4):153–171CrossRefGoogle Scholar
  8. Bryner G (2004) Coalbed methane development in the intermountain west: producing energy and protecting water. Wyo Law Rev 4:541–557Google Scholar
  9. Chen YW, Hu AM (2000) Opportunity and competition faced by forming and developing the coal-bed gas industry in China. Nat Gas Ind 4:19–23 (Chinese)Google Scholar
  10. Chhabra R (2005) Classification of salt-affected soils. Arid Land Res Manage 19:61–79CrossRefGoogle Scholar
  11. El-Hasan T (2006) Geochemical dissociation of major and trace elements in bed and suspended sediment phases of the phosphate mines effluent water, Jordan. Environ Geol 51(4):621–629CrossRefGoogle Scholar
  12. Ganjegunte GK, Vance GF, King LA (2005) Soil chemical changes resulting from irrigation with water co-produced with coalbed natural gas. J Environ Qual 34:2217–2227CrossRefGoogle Scholar
  13. Gupta RK, Abrol IP (1990) Salt-affected soils: their reclamation and management for crop production. Adv Soil Sci 11:223–288Google Scholar
  14. Hu S, Shen Y, Chen X, Gan Y, Wang X (2013) Effects of saline water drip irrigation on soil salinity and cotton growth in an oasis field. Ecohydrology 6(6):1021–1030CrossRefGoogle Scholar
  15. Ingelson A, McLean PK, Gray J (2006) CBM produced water – the emerging Canadian regulatory framework. Alberta Energy Futures Project 4:23–40Google Scholar
  16. Johnston CR, Vance GF, Ganjegunte GK (2014) Soil property changes following irrigation with coalbed natural gas water: role of water treatments, soil amendments and land suitability. Land Degrad Dev 24(4):350–362CrossRefGoogle Scholar
  17. Kędzior S (2009) Accumulation of coalbed methane in the south-west part of the upper Silesian Coal Basin (southern Poland). Int J Coal Geol 80:20–34CrossRefGoogle Scholar
  18. Lado M, Bartal A, Azenkot A, Assouline S, Ravina I, Erner Y, Fine P, Dasberg S, Ben-Hur M (2012) Changes in chemical properties of semiarid soils under long-term secondary treated wastewater irrigation. Soil Sci Soc Am J 76(4):1358–1369CrossRefGoogle Scholar
  19. Li X (2006) Present world-wide status of exploitation and utilization of coal-seam methane. Coal Proc Compr Utiliz 6:41–44 (Chinese) Google Scholar
  20. Li P, Wu J, Qian H (2013a) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225CrossRefGoogle Scholar
  21. Li P, Qian H, Wu J, Zhang Y, Zhang H (2013b) Major ion chemistry of shallow groundwater in the Dongsheng coalfield, Ordos Basin, China. Mine Water Environ 32(3):195–206CrossRefGoogle Scholar
  22. Li P, Wu J, Qian H (2014) Hydrogeochemistry and quality assessment of shallow groundwater in the southern part of the Yellow River alluvial plain (Zhongwei Section), China. Earth Sci Res J 18(1):27–38CrossRefGoogle Scholar
  23. Li P, Wu J, Qian H (2016a) Hydrochemical appraisal of groundwater quality for drinking and irrigation purposes and the major influencing factors: a case study in and around Hua County, China. Arab J Geosci 9(1):-1-17Google Scholar
  24. Li P, Wu J, Qian H, Zhang Y, Yang N, Jing L, Yu P (2016b) Hydrogeochemical characterization of groundwater in and around a wastewater irrigated forest in the southeastern edge of the Tengger Desert, northwest China. Expos Health 8(3):331–348CrossRefGoogle Scholar
  25. McBeth I, Reddy KJ, Skinner QD (2003) Chemistry of trace elements in coalbed methane product water. Water Res 37:884–890CrossRefGoogle Scholar
  26. Md RI, Daigoro H (2008) Geology and coalbed methane resource potential of the Gondwana Barapukuria Coal Basin, Dinajpur, Bangladesh. Int J Coal Geol 75:127–143CrossRefGoogle Scholar
  27. Minkina TM, Samokhin AP, Nazarenko OG (2001) Translocation of heavy metals in soil-plant system. In: Horst WJ, Schenk MK, Bürkert A, Claassen N, Flessa H, Frommer WB, Goldbach H, Olfs H-W, Römheld V, Sattelmacher B, Schmidhalter U, Schubert S, von Wirén N, Wittenmayer L (eds) Plant nutrition. developments in plant and soil sciences, vol 92. Springer, DordrechtGoogle Scholar
  28. Reddy KJ, Skinner QD, McBeth IH (2001) Exploring uses for coalbed methane product water. Univ of Wyoming Reflections 11(1):22–24Google Scholar
  29. Rhoades JD (1999) Salinity: electrical conductivity and total solved solids. In: Sparks DL (ed) Methods of Soil Analysis, Part 3, SSSA Book Ser 5. Soil Science Soc of America, Madison, pp 417–436Google Scholar
  30. Richards LA (1954) Diagnosis and improvement of saline and alkali soils. U.S. Salinity Laboratory, Washington DCGoogle Scholar
  31. Rimawi O, Jiries A, Zubi Y (2009) Reuse of mining wastewater in agricultural activities in Jordan. Environ Dev Sustain 11:695–703CrossRefGoogle Scholar
  32. Sang SX, Liu HH, Li YM (2009) Geological controls over coal-bed methane well production in southern Qinshui Basin. Proc Earth Planet Sci 1:917–922CrossRefGoogle Scholar
  33. Smith RL, Repert DA, Hart CP (2009) Geochemistry of inorganic nitrogen in waters released from coal-bed natural gas production wells in the Powder River Basin, Wyoming. Environ Sci Technol 43(7):2348–2354CrossRefGoogle Scholar
  34. Stearns M, Tindall JA (2005) Effects of coal-bed methane discharge waters on the vegetation and soil ecosystem in the Power River Basin, Wyoming. Water Air Soil Poll 168:33–57CrossRefGoogle Scholar
  35. Su X, Lin X, Liu S, Zhao M, Song Y (2005) Geology of coalbed methane reservoirs in the southeast Qinshui basin of China. Int J Coal Geol 62(4):197–210CrossRefGoogle Scholar
  36. Tang QZ (2004) Studies on salt-tolerant mechanism of oleic sunflowers and soil salinity situation treated by sea water. Nanjing Agric Univ (in Chinese) Google Scholar
  37. Thomas GW (1999) Soil pH and soil acidity. In: Sparks DL (ed) Methods of Soil Analysis, Part 3, SSSA Book Ser 5. Soil Science Soc of America, Madison, pp 475–490Google Scholar
  38. U.S. Geological Survey (2000) Water produced with coalbed methane. USGS FS-156-00. US Dept of the InteriorGoogle Scholar
  39. Valipour M (2013) Use of surface water supply index to assessing of water resources management in Colorado and Oregon, US. Adv Agric Sci Eng Res 3(2):631–640Google Scholar
  40. Valipour M (2017) Drought analysis in different basins and climates. Taiwan Water Conservancy, pp 55–63Google Scholar
  41. Valipour M, Montazar AA (2012) An evaluation of SWDC and WINSRFR models to optimize of infiltration parameters in furrow irrigation. Am J Sci Res 69:128–142Google Scholar
  42. Van Voast WA (2003) Geochemical signature of formation waters associated with coalbed methane. AAPG Bull 87(4):667–676CrossRefGoogle Scholar
  43. Wang ZC, Deng CM, Lu W (2009) Quality analysis on water from coalbed methane borehole in Jincheng Area. Coal Sci Technol 37:122–124 (Chinese) Google Scholar
  44. Wang X, Yang J, Liu G, Yao R, Yu S (2015) Impact of irrigation volume and water salinity on winter wheat productivity and soil salinity distribution. Agr Water Manage 149:44–54CrossRefGoogle Scholar
  45. Wu J, Sun Z (2016) Evaluation of shallow groundwater contamination and associated human health risk in an alluvial plain impacted by agricultural and industrial activities, mid-west China. Expos Health 8(3):311–329CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Xiangdong Li
    • 1
  • Bo Fei
    • 1
  • Qiyan Feng
    • 1
  • Lai Zhou
    • 1
  • Yue Sun
    • 2
  1. 1.School of Environment Science and Spatial InformaticsChina University of Mining and TechnologyXuzhouChina
  2. 2.College of Earth ScienceUniversity of Chinese Academy SciencesBeijingChina

Personalised recommendations