Advertisement

Mine Water and the Environment

, Volume 37, Issue 2, pp 249–262 | Cite as

Multivariate Analysis of Water Quality of the Chenqi Basin, Inner Mongolia, China

  • Honglei Liu
  • Qiang Wu
  • Mingjun Wang
  • Meng Zhang
Technical Article

Abstract

Numerous water samples are necessary to predict and assess water quality. However, if the geographical conditions surrounding mines are harsh mountainous areas, continuous or uniform sampling can be challenging, resulting in difficult sampling or data loss. In this study, statistical analysis of normalized data collected in the Chenqi Basin, including factor analysis and principal component analysis, revealed the water quality’s macro-distribution. Analytic solutions of partial differential equations of regional phreatic water quality were used to evaluate the mining and recharge–discharge of the regional phreatic aquifer. This method compensates for the disadvantage of evaluating discrete samples. Hydrogeological monitoring, pumping tests, and water quality analysis of phreatic water were carried out in the west of the Dongming open pit mine. Eight hydrogeochemical water quality variables (WQV) were selected as analysis targets. With hydrogeological generalization, regression equations of the diffusion of WQV and the seepage field were developed by a cumulative index that samples data from different orientations. One-dimensional diffusion partial differential equations of WQV, which are related to the distance and time of the seepage flow, were derived. Current and future predictions and evaluations of the phreatic water quality in the basin were made by ArcGIS based on regression and cumulative evaluation index methods. Findings revealed that the influence area of the mine would significantly expand in 10 years if current conditions continue. In addition, the diffusion speed was found to be higher in the southwestern part of the mine than in the west and northwestern parts, which is consistent with the recharge and discharge conditions of the Chenqi Basin.

Keywords

Mine water environment Phreatic water Water quality evaluation Water quality prediction Water quality variables Open-pit mine 

Multivariate analysis of water quality of Chenqi Basin, Inner Mongolia, China

基于多元统计分析的内蒙古陈旗盆地水质综合评价

矿山地下水水质评价与预测需要大量地下水样本的采集和基于样本的水质指标分析。但是, 由于中国许多矿山地处偏僻山区且周边地形地貌极为复杂, 理想状态下的连续或均匀的地下水样本难以获得,导致采样样本的间断或丢失, 使一些地区矿山水质的综合评价难以进行。本文利用两种多元统计方法——因素分析法和主成分分析法对陈旗盆地潜水水质样本的归一化数值进行了分析, 进而揭示出陈旗盆地潜水水质的宏观分布规律。利用潜水含水层溶质运移理想数学模型的解析解, 对陈旗盆地范围内受采矿与径流补给条件影响的潜水含水层进行了水质分析评价。该评价方法弥补了利用离散样本进行水质分析评价的不足。通过对东明露天矿以西的潜水含水层进行水文地质调查、抽水试验和水质样本分析, 本文选取了水质样本中8个水文地球化学指标(WQV)作为分析依据, 运用累积指数法建立了不同方向溶质扩散和潜水含水层渗流场回归方程, 并推导与渗流距离和渗流时间相关的一维溶质扩散偏微分方程;进一步基于ArcGIS软件应用溶质扩散回归方程法和累积评价指数法对陈旗盆地内的潜水水质进行了评价和预测。分析结果显示, 在陈旗盆地地下水水文地质参数保持基本稳定的情况下, 十年后露天矿山开采对区域潜水含水层水质的影响范围将逐步扩大, 并且矿山西南部的溶质扩散速率略高于西部和西北部的扩散速率, 这与陈旗盆地内的补给径流条件分析结论一致。

Multivariate Analyse der Wasserqualität im Chenqi-Becken, Innere Mongolei, China

Zusammenfassung

Zahlreiche Wasserproben sind notwendig, um die Wasserqualität vorherzusagen und zu bewerten. Wenn die geographischen Bedingungen im Umfeld von Bergwerken jedoch raue Gebirgsregionen sind, kann die kontinuierliche oder einheitliche Probenahme eine Herausforderung darstellen, verbunden mit schwieriger Probenahme oder Datenverlusten. In dieser Studie zeigte die statistische Analyse der im Chenqi-Becken gesammelten normalisierten Daten, einschließlich der Faktoranalyse und der Hauptkomponentenanalyse, die Makroverteilung der Wasserqualität. Analytische Lösungen von partiellen Differentialgleichungen der regionalen Grundwasserqualität wurden für die Bewertung des bergbaulichen Einflusses auf Grundwasserneubildung und Abflussregime des regionalen Grundwasserleiters verwendet. Diese Methode kompensiert den Nachteil der Auswertung diskreter Proben. Hydrogeologische Überwachung, Pumpversuche und Wasserqualitätsanalysen von Grundwasser wurden im Westen der Tagebaumine Dongming durchgeführt. Acht hydrogeochemische Wasserqualitätsvariablen wurden als Analyseziele ausgewählt. Mit hydrogeologischer Verallgemeinerung wurden Regressionsgleichungen zur Diffusion von Wasserqualitätsvariablen und zum Durchsickerungsfeld durch einen kumulativen Index entwickelt, der Daten verschiedener Ausrichtung erfasst. Eindimensionale Diffusions-Partialdifferentialgleichungen von Wasserqualitätsvariablen, die mit dem Abstand und der Zeit des Sickerstroms in Beziehung stehen, wurden abgeleitet. Aktuelle und zukünftige Vorhersagen und Bewertungen der Grundwasserqualität im Becken wurden mit Hilfe von ArcGIS auf der Grundlage von Regressions- und kumulativen Bewertungsindexmethoden erstellt. Die Ergebnisse zeigen, dass sich der Einflussbereich der Mine in 10 Jahren erheblich ausdehnen würde, wenn die derzeitigen Bedingungen fortbestehen. Darüber hinaus wurde festgestellt, dass die Diffusionsgeschwindigkeit im südwestlichen Teil der Mine höher ist als im westlichen und nordwestlichen Bereich, übereinstimmend mit den Bedingungen von Grundwasserneubildung und Abflussregime im Chenqi-Becken

Análisis multivariante de la calidad del agua de la cuenca de Chenqi, Mongolia Interior, China

Resumen

Numerosas muestras de agua son necesarias para predecir y evaluar la calidad del agua. Sin embargo, si las condiciones geográficas que rodean a las minas son áreas montañosas duras, el muestreo continuo o uniforme puede ser un desafío, lo que da como resultado un muestreo difícil o la pérdida de datos. En este estudio, el análisis estadístico de los datos normalizados recopilados en la cuenca de Chenqi, incluidos el análisis de factores y el análisis de componentes principales, reveló la macrodistribución de la calidad del agua. Se utilizaron soluciones analíticas de ecuaciones en derivadas parciales de la calidad del agua freática regional para evaluar la extracción y la descarga del acuífero freático regional. Este método compensa la desventaja de evaluar muestras discretas. El monitoreo hidrogeológico, las pruebas de bombeo y el análisis de la calidad del agua freática se llevaron a cabo en el oeste de la mina a cielo abierto Dongming. Ocho variables de calidad hidrogeoquímica del agua fueron seleccionadas como objetivos de análisis. Con generalización hidrogeológica, regression Las ecuaciones de la difusión de las variables de calidad del agua y del campo de filtración se desarrollaron mediante un índice acumulativo que muestrea datos de diferentes orientaciones. Se derivaron ecuaciones diferenciales parciales de difusión unidimensional de variables de calidad del agua, que están relacionadas con la distancia y el tiempo del flujo de filtración. Las predicciones y evaluaciones actuales y futuras de la calidad freática del agua en la cuenca fueron hechas por ArcGIS con base en métodos de regresión y de índice de evaluación acumulativa. Los resultados revelaron que el área de influencia de la mina se expandiría significativamente en 10 años si las condiciones actuales continúan. Además, se encontró que la velocidad de difusión era más alta en la parte suroeste de la mina que en las partes oeste y noroeste, lo que es consistente con las condiciones de recarga y descarga de la cuenca de Chenqi.

Notes

Acknowledgements

The authors thank Dr. Peiyue Li for his constructive suggestions. This research was financially supported by the China National Scientific and Technical Support Program (2016YFC0801800), the China National Natural Science Foundation (41430318, 41272276, 41602262 and 41572222), Beijing Natural Science Foundation (8162036), and the National Geological Survey Program (DD20160266), Innovation Research Team Program of Ministry of Education (IRT1085) and State Key Laboratory of Coal Resources and Safe Mining. The authors gratefully acknowledge financial support from the China Scholarship Council (CSC). The authors also thank the editors and reviewers for their constructive input.

References

  1. Andrade LN, Araujo SF, Matos AT, Henriques AB, Oliveira LC, Souza PP, Chagas P, Leão MMD, Amorim CC (2017) Performance of different oxidants in the presence of oxisol: Remediation of groundwater contaminated by gasoline/ethanol blend. Chem Eng J 308:428–437CrossRefGoogle Scholar
  2. Balintova M, Singovszka E, Vodicka R, Purcz P (2016) Statistical evaluation of dependence between pH, metal contaminants, and flow rate in the AMD-affected Smolnik Creek. Mine Water Environ 35(1):10–17CrossRefGoogle Scholar
  3. Bencer S, Boudoukha A, Mouni L (2016) Multivariate statistical analysis of the groundwater of Ain Djacer area (eastern Algeria). Arab J Geosci 9:248.  https://doi.org/10.1007/s12517-015-2277-6 CrossRefGoogle Scholar
  4. Chai TK (1981) Management of groundwater basin: theory and practice (translated by Wang BC). Geological Publ House, Beijing (in Chinese) Google Scholar
  5. Fijani E, Moghaddam A, Tsai F, Tayfur G (2017) Analysis and assessment of hydrochemical characteristics of Maragheh-Bonab Plain aquifer, northwest of Iran. Water Resour Manage 31(3):765–780CrossRefGoogle Scholar
  6. Houillon N, Lastennet R, Denis A, Malaurent P (2016) Hydrochemical and hydrodynamic behavior of the epikarst at the Lascaux Cave (Montignac, France). EuroKarst 2016 Neuchâtel. Cham: Springer, p 319–326Google Scholar
  7. IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0. Armonk, New York: IBM CorpGoogle Scholar
  8. Jiries A, El-Hasan T, Al-Hweiti M, Seiler KP (2004) Evaluation of the effluent water quality produced at phosphate mines in central Jordan. Mine Water Environ 23(3):133–137CrossRefGoogle Scholar
  9. Lamhonwah D, Lafrenière M, Lamoureux S, Wolfe B (2017) Evaluating the hydrological and hydrochemical responses of a high arctic catchment during an exceptionally warm summer. Hydrol Process 31(12):2296–2313CrossRefGoogle Scholar
  10. Li P (2016) Groundwater quality in western China: challenges and paths forward for groundwater quality research in western China. Expos Health 8(3):305–310CrossRefGoogle Scholar
  11. Li P, Wu J, Qian H (2013) Assessment of groundwater quality for irrigation purposes and identification of hydrogeochemical evolution mechanisms in Pengyang County, China. Environ Earth Sci 69(7):2211–2225CrossRefGoogle Scholar
  12. Li P, Wu J, Qian H (2014) Origin and assessment of groundwater pollution and associated health risk: a case study in an industrial park, northwest China. Environ Geochem Health 36(4):693–712CrossRefGoogle Scholar
  13. Li P, Wu J, Yu H, Yang Z, Jing L, Yu P (2016) Hydrogeochemical characterization of groundwater in and around a waste water irrigated forest in the southeastern edge of the Tengger Desert, northwest China. Expos Health 8(3):331–348CrossRefGoogle Scholar
  14. Li P, Tian R, Xue C, Wu J (2017) Progress, opportunities and key fields for groundwater quality research under the impacts of human activities in China with a special focus on western China. Environ Sci Poll Res 24(15):13224–13234CrossRefGoogle Scholar
  15. Ling TY, Soo CL, Liew JJ, Nyanti L, Sim SF, Grinang J (2017) Application of multivariate statistical analysis in evaluation of surface river water quality of a tropical river. J Chem 2017:13.  https://doi.org/10.1155/2017/5737452 Google Scholar
  16. Lu W, Bian Y, Li H (2006) Assessment and prediction of phreatic water quality in the catchment of Huanglong Industrial Site. Water Resour Protect 03:72–74 (Chinese)Google Scholar
  17. Mahato MK, Singh PK, Tiwari AK, Singh AK (2016) Risk assessment due to intake of metals in groundwater of East Bokaro Coalfield, Jharkhand, India. Expos Health 8:265–275CrossRefGoogle Scholar
  18. Michael SW, Kenneth CH, Kelsey VF, Lynn P, Blair SB (2016) Water quality dynamics in an urbanizing subtropical estuary(Oso Bay, Texas). Marine Poll Bull 104(1–2):44–53Google Scholar
  19. Mohammad A, Christoph R, Walker JP (2017) Statistical analysis of short-term water stress conditions at Riggs Creek Oz Flux tower site. Theor Appl Climatol 130(1–2):497–509Google Scholar
  20. Noble TL, Lottermoser BG, Parbhakar-Fox A (2016) Evaluation of pH testing methods for sulfidic mine waste. Mine Water Environ 35(3):318–331CrossRefGoogle Scholar
  21. Qian C, Mu P (2016) Fuzzy comprehensive evaluation of groundwater quality based on principal component analysis. Water Resource Power 34:31–35 (Chinese)Google Scholar
  22. Qian J, Wang L, Ma L, Lu Y (2016) Multivariate statistical analysis of water chemistry in evaluating groundwater geochemical evolution and aquifer connectivity near a large coal mine, Anhui, China. Environ Earth Sci 75:747CrossRefGoogle Scholar
  23. Rajmohan N, Patel N, Singh G, Amarasinghe U (2017) Hydrochemical evaluation and identification of geochemical processes in the shallow and deep wells in the Ramganga Sub-Basin, India. Environ Sci Poll Res 24(26):21459–21475CrossRefGoogle Scholar
  24. Rapantova N, Grmela A, Vojtek D, Halir J, Michalek B (2007) Ground water flow modelling applications in mining hydrogeology. Mine Water Environ 26(4):264–270CrossRefGoogle Scholar
  25. Senapaty A, Behera P (2012) Concentration and distribution of trace elements in different coal seams of the Talcher coalfield, Odisha. Int J Earth Sci Eng 5(5):80–87Google Scholar
  26. Sun W, Wu Q, Liu H, Jiao J (2015) Prediction and assessment of the disturbances of the coal mining in Kailuan to karst groundwater system. Phys Chem Earth 89–90:136–144CrossRefGoogle Scholar
  27. Wu J, Li P, Qian H, Duan Z, Zhang X (2014) Using correlation and multivariate statistical analysis to identify hydrogeochemical processes affecting the major ion chemistry of waters: case study in Laoheba phosphorite mine in Sichuan, China. Arab J Geosci 7(10):3973–3982CrossRefGoogle Scholar
  28. Yihdego Y, Drury L (2016) Mine water supply assessment and evaluation of the system response to the designed demand in a desert region, central Saudi Arabia. Environ Monit Assess 188:619.  https://doi.org/10.1007/s10661-016-5540-8 CrossRefGoogle Scholar
  29. Environmental Systems Research Institute (2015) ArcGIS Release 10.3. RedlandsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Engineering Research Center of Coal Mine Water Hazard ControllingChina University of Mining and Technology (CUMTB)BeijingChina
  2. 2.School of Geoscience and Surveying EngCUMTBBeijingChina
  3. 3.Illinois State Geological SurveyUniversity of Illinois at Urbana-ChampaignChampaignUSA
  4. 4.Mine SectionInstitute of Geo-environmental Monitoring of Inner Mongolia Autonomous RegionHohhotChina

Personalised recommendations