Skip to main content

Treatment of Mine Drainage with Significant Topographical Constraints: Case Study of the Bodennec Site (France)

Behandlung von Grubenwasser unter speziellen topographischen Bedingungen: Fallstudie Bodennec (Frankreich)

Tratamiento del drenaje de la mina con importantes restricciones topográficas: caso de estudio en el sitio Bodennec (Francia)

考虑地形约束建立矿井水处理系统:Bodennec(法国)案例

Abstract

The Bodennec lead and zinc mine site produces circumneutral mine drainage that contains 8 mg/L of dissolved iron, while the water quality objective is 3 mg/L at the outlet. The water treatment installation in use, based on three settling ponds, could not reach this objective, but there was insufficient surface area to build additional ponds or a passive treatment plant. A pilot-scale NaOH system, made of a pump controlled by a flow meter, was built on site to assess the feasibility of a low maintenance, low chemical consumption system to inject a small volume of concentrated NaOH solution into the water. The system was supplied with electricity by a solar panel connected to a battery for night-time functioning. No pH probe was needed since the pH in the drainage is stable. A final water treatment plant based on this system was built in 2017.

Zusammenfassung

Das Bodennec Blei- und Zink-Bergwerk produziert cirkum-neutrales Grubenwasser mit 8 mg/L gelöstem Eisen. Der einzuhaltende Grenzwert am Werksauslass ist 3 mg/L. Das benutzte Behandlungssystem, bestehend aus drei Absetzteichen, konnte den Grenzwert nicht einhalten. Platz für weitere Teiche oder passive Behandlungssysteme ist aber nicht vorhanden. Um die Machbarkeit eines wartungsarmen, wenig Chemikalien verbrauchenden Systems zu bewerten, wurde auf dem Bergwerksgelände eine Pilotanlage installiert. Eine mittels Strömungsmesser gesteuerte Pumpe dosiert kleine Mengen konzentrierter NaOH-Lösung in das Grubenwasser. Für die Energieversorgung wurde das System mit Solar-Panelen und einer Batterie (für den Nachtbetrieb) ausgestattet. pH-Messungen waren nicht notwendig, weil das Grubenwasser einen stabilen pH-Wert aufweist. 2017 wurde eine auf dem getesteten Ansatz basierende Behandlungsanlage errichtet.

Resumen

El sitio de la mina de plomo y zinc de Bodennec produce un drenaje circunneutral de la mina que contiene 8 mg/L de hierro disuelto frente a los 3 mg/L que constituye el objetivo de calidad del agua en la salida. La instalación de tratamiento de agua en uso, basada en tres estanques de sedimentación, no pudo alcanzar este objetivo, pero no había suficiente superficie para construir estanques adicionales o una planta de tratamiento pasivo. Se construyó una planta a escala piloto que podía proporcionar NaOH y que contaba con una bomba controlada por un medidor de flujo, en función de evaluar la viabilidad de un sistema de bajo consumo de químicos para inyectar un pequeño volumen de solución concentrada de NaOH en el agua. Se suministró electricidad al sistema mediante un panel solar conectado a una batería para funcionar durante la noche. No se necesitó sonda de pH ya que el pH en el drenaje es estable. En 2017 se construyó una planta de tratamiento de agua basada en este sistema piloto.

抽象

Bodennec铅锌矿产生的近中性矿井水含可溶铁8mg/L,但废水排放口水质要求为3mg/L。虽然使用中的水处理厂已经包含了三个沉清池,但仍未达到排放要求;受地形面积限制,已经无法再增加处理池或被动处理厂。现场建立小型的流量控制NaOH系统,向矿井水喷射少量浓缩NaOH溶液,旨在评价该种低维护和低化学消耗处理方法的可行性。利用太阳能电池板为水处理系统夜晚工作供电。矿井水pH值稳定,系统未安装pH电极。基于本试验结果,2017年建立了最终水处理系统。

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

References

  • Chen C-J, Jiang W-T (2012) Influence of waterfall aeration and seasonal temperature variation on the iron and arsenic attenuation rates in an acid mine drainage system. Appl Geochem 27(10):1966–1978

    Article  Google Scholar 

  • Coulton R, Bullen C (2003) The design and optimisation of active mine water treatment plants. Land Contam Reclamat 11(2):273–279

    Article  Google Scholar 

  • Dempsey BA, Jeon B-H (2001) Characteristics of sludge produced from passive treatment of mine drainage. Geochem Explor Environ Anal 1(1):89–94

    Article  Google Scholar 

  • Hashimoto H, Yokoyama S, Asaoka H, Kusano Y, Ikeda Y, Seno M, Takada J, Fujii T, Nakanishi M, Murakami R (2007) Characteristics of hollow microtubes consisting of amorphous iron oxide nanoparticles produced by iron oxidizing bacteria, Leptothrix ochracea. J Magn Magn Mater 310(2, part 3):2405–2407

    Article  Google Scholar 

  • Hedin RS, Nairn RW, Kleinmann RL (1994) Passive treatment of coal mine drainage. US Bureau of Mines Information Circular 9389, Pittsburgh

    Google Scholar 

  • Hustwit CC, Ackman TE, Erickson PE (1992) The role of oxygen transfer in acid mine drainage (AMD) treatment. Water Environ Res 64(6):817–823

    Article  Google Scholar 

  • Kirby CS, JAE Brady (1998) Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously-stirred tank reactor. Appl Geochem 13(4):509–520

    Article  Google Scholar 

  • Kirby CS, Thomas HM, Southam G, Donald R (1999) Relative contributions of abiotic and biological factors in Fe(II) oxidation in mine drainage. Appl Geochem 14(4):511–530

    Article  Google Scholar 

  • Millero FJ, Sotolongo S, Izaguirre M (1987) The oxidation kinetics of Fe(II) in seawater. Geochimica et Cosmochimica Acta 51(4):793–801

    Article  Google Scholar 

  • Morgan B, Lahav O (2007) The effect of pH on the kinetics of spontaneous Fe (II) oxidation by O 2 in aqueous solution–basic principles and a simple heuristic description. Chemosphere 68(11):2080–2084

    Article  Google Scholar 

  • Skousen J, Rose A, Geidel G, Foreman J, Evans R, Hellier W (1998) Handbook of technologies for avoidance and remediation of acid mine drainage. National Mine Land Reclamation Center, WVU, Morgantown

    Google Scholar 

  • Skousen J, Zipper CE, Rose A, Ziemkiewicz PF, Nairn R, McDonald LM, Kleinmann RL (2017) Review of passive systems for acid mine drainage treatment. Mine Water Environ 36(1):133–153

    Article  Google Scholar 

  • Trumm D (2010) Selection of active and passive treatment systems for AMD-flow charts for New Zealand conditions. New Zeal J Geol Geop 53(2–3):195–210

    Article  Google Scholar 

  • Vollrath S, Behrends T, Koch CB, van Cappellen P (2013) Effects of temperature on rates and mineral products of microbial Fe(II) oxidation by Leptothrix cholodnii at microaerobic conditions. Geochim Cosmochim Acta 108:107–124

    Article  Google Scholar 

  • Watzlaf GR (2004) Treatment of high-flow, low-iron mine drainage with a semi-passive system. In: Proceeding 2004 National Meeting of the American Society of Mining and Reclamation and the 25th WV Surface Mine Drainage Task Force Symposium 2004:1962–73 Published by ASMR, 3134 Montavesta Rd, Lexington, KY

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the past and present project team members: Mickael Beaulieu, Florian Koch, Jean-Pierre Jegou, Dominique Breeze, Jean Feraud, Gael Bellenfant, Bernard Lamouille, and François Blanchard. Special thanks to Elise Burton for proofreading. Financial support for these studies was provided by BRGM SA within the framework of waiving its mining rights. This work was also part of the Mineautaure research project funded by BRGM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jérôme C. Jacob.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jacob, J.C., Save, M. & Menard, Y. Treatment of Mine Drainage with Significant Topographical Constraints: Case Study of the Bodennec Site (France). Mine Water Environ 37, 839–848 (2018). https://doi.org/10.1007/s10230-018-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-0522-4

Keywords

  • Fe oxidation
  • Fe hydroxide
  • Semi-passive treatment
  • Settling
  • Sodium hydroxide