Skip to main content
Log in

Mobility and Behaviour of Metals in Copper Mine Tailings and Soil at Khetri, India

Mobilität und Verhalten von Metallen in Abraumhalden und Böden von Kupferminen in Khetri, Indien

Movilidad y comportamiento de los metales en los relaves y en el suelo de la mina de cobre en Khetri, India

印度Khetri铜矿尾矿和土壤的金属活性和行为特征

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The mobility and behaviour of metals (Cu, Zn, Ni, Cr, and Pb) in mine tailings and neighbouring soils were studied in the Khetri copper mine region, Rajasthan, India. Single reagent extraction was used to assess the mobility and availability of metals, while sequential chemical fractionation (water soluble, acidic, and reducible) was used to evaluate their behaviour in the environment. Samples were divided into two different physical grain size fractions to assess the impact of grain size on extraction. The mobility trend in both tailings and soil followed the order Ni > Zn > Cu. Metals of lithogenic origin (Cr and Pb) were less extracted in the water soluble fraction or non-residual fractions than those associated with mining. The acid leachable fraction was high in the tailings due to the presence of sulphide minerals. Hence, acidification of tailings would enhance leaching of metals. Results of single and sequential chemical extraction indicate that the Cu, Zn, and Ni are anthropogenic, as they were mostly associated with the non-residual fraction of the soil.

Zusammenfassung

Die Mobilität und das Verhalten von Metallen (Cu, Zn, Ni, Cr und Pb) in Abraumhalden und benachbarten Böden wurden in der Khetri-Kupfermine in Rajasthan (Indien) untersucht. Die Extraktion mit einem einzelnen Reagens diente dazu, die Mobilität und Verfügbarkeit dieser Metalle zu bewerten, während sequenzielle chemische Fraktionierung (wasserlöslich, sauer und reduzierbar) zur Bewertung ihres Verhaltens in der Umwelt eingesetzt wurde. Die Proben wurden in zwei verschiedene physikalische Korngrößenfraktionen unterteilt, um den Einfluss der Korngröße auf die Extraktion zu ermitteln. Der Mobilitätstrend in beiden Abraumhalden und im Boden folgte der Reihenfolge Ni > Zn > Cu. Metalle mit lithogenem Ursprung (Cr und Pb) wurden in der wasserlöslichen Fraktion und in rückstandslosen Fraktionen weniger extrahiert als die mit Bergbau in Verbindung stehenden Metalle. Aufgrund der Anwesenheit von Sulfidmineralien war die mit Säure extrahierbare Fraktion in den Abraumhalden hoch. Somit würde eine Ansäuerung der abgelagerten Rückstände die Auslaugung der Metalle verbessern. Die Ergebnisse der singulären Extraktionen und der sequenziellen chemischen Extraktion zeigen, dass Cu, Zn und Ni anthropogenen Ursprungs waren, da sie meist mit der rückstandslosen Bodenfraktion assoziiert waren.

Resumen

Se estudió la movilidad y el comportamiento de metales (Cu, Zn, Ni, Cr y Pb) en relaves mineros y suelos vecinos en la región minera de cobre Khetri, Rajasthan, India. La extracción de reactivo único se utilizó para evaluar la movilidad y la disponibilidad de metales, mientras que el fraccionamiento químico secuencial (soluble en agua, ácido y reducible) se utilizó para evaluar su comportamiento en el medio ambiente. Las muestras se dividieron en dos fracciones de tamaño de grano diferentes para evaluar el impacto del tamaño de grano en la extracción. La tendencia de la movilidad en relaves y suelo siguió el orden Ni> Zn> Cu. Los metales de origen litogénico (Cr y Pb) se extrajeron menos en la fracción soluble en agua o o en fracciones no residuales que los asociados con la extracción. La fracción lixiviable por ácido fue alta en los relaves debido a la presencia de sulfuros. Por lo tanto, la acidificación de los relaves mejoraría la lixiviación de los metales. Los resultados de extracción química única y secuencial indican que Cu, Zn y Ni fueron de origen antropogénico ya que se asociaron principalmente con la fracción no residual del suelo.

抽象

研究了印度拉贾斯坦邦Khetri地区铜矿尾矿及附近土壤的金属(铜、锌、 镍、铬、和铅)活性和行为特征。单试剂提取用以评价金属活性和生物可获取性,顺序化学分离(水溶态、酸溶态和残渣态)用以评价金属环境行为特征。样品按粒径分成两部分以评价粒径对提取的影响。尾矿和土壤中金属活性顺序为镍>锌>铜。岩石成因金属(铬和铅)的水溶态和非残渣态比采矿成因更少。硫化物使尾矿的酸溶态更高。尾矿酸化将使更多金属滤出。单试剂提取与顺次化学分离结果表明铜、锌和镍属人类成因,多为土壤非残渣态。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  • Chuan MC, Shu GY, Liu JC (1996) Solubility of heavy metals in a contaminated soil: effects of redox potential and pH. Water Air Soil Pollut 90(3):543–556

    Article  Google Scholar 

  • Das M, Maiti SK (2008) Comparison between availability of heavy metals in dry and wetland tailing of an abandoned copper tailing pond. Environ Monit Assess 137:343–350

    Article  Google Scholar 

  • Das Gupta SP (1968) The structural history of the Khetri copper belt, Jhunjhunu and Sikar districts, Rajasthan. Mem Geol Surv India 98:170

    Google Scholar 

  • Dwevedi A, Kumar P, Kumar P, Kumar Y, Sharma YK, Kayastha AM (2017) Soil sensors: detailed insight into research updates, significance, and future prospects. In: Grumezescu A (ed) New pesticides and soil sensors, Vol 10, Academic Press, Cambridge, pp 561–594

    Chapter  Google Scholar 

  • Filipek LH, Chao TT, Carpenter RH (1982) Factors affecting the partitioning of Cu, Zn and Pb in boulder coatings and stream sediments in the vicinity of a polymetallic sulfide deposit. Chem Geol 33:45–64

    Article  Google Scholar 

  • Gee GW, Bauder JW (1986) Methods of soil analysis, Part 1, Physical and mineralogical methods—agronomy monograph no. 9, 2nd Edit. American Soc of Agronomy—Soil Science Soc of America, Madison

    Google Scholar 

  • Geological Survey of India (1977) Geology and mineral resources of the states of Rajasthan, Part XII-Rajasthan. Misc Publ 30:33–34

    Google Scholar 

  • Giri S, Singh AK (2017) Human health risk assessment due to dietary intake of heavy metals through rice in the mining areas of Singhbhum Copper Belt, India. Environ Sci Pollut Res 24:14945–14956

    Article  Google Scholar 

  • Goldberg ED (1954) Marine geochemistry 1. Chemical scavengers of the sea. J Geol 62(3):249–265

    Article  Google Scholar 

  • Gupta P, Guha DB, Chattopadhyay B (1998) Basement–cover relationship in the Khetri copper belt and the emplacement mechanism of the granite massifs, Rajasthan. J Geol Soc India 52:417–432

    Google Scholar 

  • Hansen HK, Yianatos JB, Ottosen LM (2005) Speciation and leachability of copper in mine tailings from porphyry copper mining: influence of particle size. Chemosphere 60:1497–1503

    Article  Google Scholar 

  • Hendershot WH, Lalande H, Duquette M (1993) Soil reaction and exchangeable acidity. In: Carter MR (ed) Soil sampling and methods of analysis for canadian society of soil science. Lewis, Boca Raton, pp 141–145

    Google Scholar 

  • Kaur G, Mehta PK (2005) The Gothara plagiogranite: evidence for oceanic magmatism in a non-ophiolitic association, North Khetri copper belt, Rajasthan, India?. J Asian Earth Sci 25:805–819

    Article  Google Scholar 

  • Kennedy VH, Sanchez AL, Oughton DH, Rowland AP (1997) Use of single and sequential chemical extractants to assess radionuclide and heavy metal availability from soils for root uptake. Analyst 122:89–100

    Article  Google Scholar 

  • Khorasanipour M, Tangestani MH, Naseh R, Hajmohammadi H (2012) Chemical fractionation and contamination intensity of trace elements in stream sediments at the Sarcheshmeh porphyry copper mine, SE Iran. Mine Water Environ 31:199–213

    Article  Google Scholar 

  • Knight J, Joy S, Lowe J, Cameron J, Merrillees J, Nag S, Shah N, Dua G, Jhala K (2002) The Khetri copper belt, Rajasthan: iron-oxide copper-gold terrane in the Proterozoic of NW India. In: Porter TM (ed) Hydrothermal iron oxide copper–gold and related deposits: a global perspective, vol 2. PGC Publ, Adelaide, pp 321–341

    Google Scholar 

  • Lee CG, Chon H-T, Jung MC (2001) Heavy metal contamination in the vicinity of the Daduk Au–Ag–Pb–Zn mine in Korea. Appl Geochem 16(11–12):1377–1386

    Article  Google Scholar 

  • Leppinen JO, Salonsaari P, Palosaari V (1997) Flotation in acid mine drainage control: beneficiation of concentrate. Can Metall Q 36:225–230

    Article  Google Scholar 

  • Ma LQ, Rao GN (1997) Chemical fractionation of cadmium, copper, nickel, and zinc in contaminated soils. J Environ Qual 13:372–376

    Google Scholar 

  • McGrath D (1996) Application of single and sequential extraction procedures to polluted and unpolluted soils. Sci Total Environ 178:37–44

    Article  Google Scholar 

  • McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J Contam Hydrol 33:247–271

    Article  Google Scholar 

  • Moore F, Aghazadeh AA (2012) Trace metal occurrence and mobility assessment in stream sediments near the Sungun porphyry copper deposit in northwest Iran. Mine Water Environ (2012) 31:29–39

    Article  Google Scholar 

  • Punia A, Siddaiah NS, Singh SK (2017) Source and assessment of heavy metal pollution at Khetri copper mine tailings and neighboring soil, Rajasthan, India. Bull Environ Contam Toxicol 99:633–641

    Article  Google Scholar 

  • Ramirez M, Massolo S, Frache R, Correa JA (2005) Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Mar Pollut Bull 50(1):62–72

    Article  Google Scholar 

  • Rao CRM, Sahuquillo A, Sanchez JFL (2008) A review of the different methods applied in environmental geochemistry for single and sequential extraction of trace elements in soils and related materials. Water Air Soil Pollut 189:291–333

    Article  Google Scholar 

  • Rauret G, Rubio R, Lopez-Sachez JF (1989) Optimization of Tessier procedure for metal solid speciation in river sediments. Int J Environ Anal Chem 36:69–83

    Article  Google Scholar 

  • Salomons W (1993) Adoption of common schemes for single and sequential extractions of trace metal in soils and sediments. Int J Environ Anal Chem 51:34

    Article  Google Scholar 

  • Shahid M, Pinelli E, Dumat C (2012) Review of Pb availability and toxicity to plants in relation with metal speciation; role of synthetic and natural organic ligands. J Hazard Mater 219–220:1–12

    Article  Google Scholar 

  • Tack F, Verloo M (1991) Estimation and testing of environmental effects of heavy metals in dredged materials. Proc, CATS Congress, K.VIV, Antwerpen, pp 3.55–59

    Google Scholar 

  • Ure AM (1996) Single extraction schemes for soil analysis and related applications. Sci Total Environ 178:3–10

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Dean of the School of Environmental Sciences, Jawaharlal Nehru University for encouragement and DST (Purse-Phase-II) & UGC (UPE-II) for financial support. AP acknowledges the University Grant Commission for her Junior Research Fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Siva Siddaiah.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 729 KB)

Supplementary material 2 (DOCX 10 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Punia, A., Siddaiah, N.S. Mobility and Behaviour of Metals in Copper Mine Tailings and Soil at Khetri, India. Mine Water Environ 38, 385–390 (2019). https://doi.org/10.1007/s10230-018-00582-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-018-00582-1

Keywords

Navigation