Assessment of Hydrogeochemical Processes and Mine Water Suitability for Domestic, Irrigation, and Industrial Purposes in East Bokaro Coalfield, India

印度East Bokaro煤田水文地球化学过程及水质的生活、灌溉和工业适用性评价

Bewertung der hydrogeochemischen Prozesse und der Verwendbarkeit des Grubenwassers im East Bokaro Kohlenrevier in Indien für die öffentlichen Wasserversorgung, zur Bewässerung und für industrielle Zwecke

Relevamiento de procesos hidrogeoquímicos y aptitud del agua de mina para uso doméstico, riego y propósitos industriales en el campo de carbón East Bokaro, India

Abstract

Mine water samples collected from the East Bokaro coalfield were analysed to assess suitability for domestic, irrigation, and industrial purposes. The pH of the samples ranged from 6.78 to 8.11 in the pre-monsoon season, 5.89–8.51 during the monsoon season, and 6.95–8.48 in the post-monsoon season. The anion chemistry was dominated by HCO3 and SO42−, with minor amounts of Cl, NO3 and F. The Fe concentrations exceeded the maximum permissible limit of the BIS drinking water standard in about 44% of the collected samples. Turbidity, TDS, Fe, total hardness (TH), SO42−, and Mg2+ also sometimes exceeded drinking water limits. The TDS, TH and SO42− concentrations of the mine water makes it unsuitable for domestic purposes or for industrial use; high values of %Na, SAR, RSC, and Mg-hazard at certain sites restrict its suitability for agricultural use.

Zusammenfassung

Grubenwasserproben aus dem East Bokaro Kohlenrevier wurden analysiert, um die Verwendbarkeit zur öffentlichen Wasserversorgung, zur Bewässerung und für industrielle Zwecke zu beurteilen. Der pH-Wert der Proben lag vor der Monsunzeit zwischen 6,78 und 8,11, während der Monsunzeit zwischen 5,89 und 8,51 und nach der Monsunzeit zwischen 6,95 und 8,48. Die Anionenchemie mit untergeordneten Anteilen von Cl-, NO3- und F- war von HCO3- und SO4-- dominiert. Die Eisenkonzentration überschritt den maximal zulässigen Grenzwert der nationalen indischen Trinkwassernorm bei 44% der gezogenen Proben. Trübung, Filtrattrockenrückstand (TDS), Fe, Gesamthärte, SO4-- und Mg++ überschritten ebenfalls manchmal die Trinkwassergrenzwerte. Der Filtrattrockenrückstand, die Gesamthärte und die SO4-- Konzentrationen des Grubenwassers schließen eine Verwendung zur Trinkwasserversorgung und für industrielle Zwecke aus. Die hohen Werte von Natrium, des Natrium-Adsorptionswerts (SAR), des Natriumkarbonatrückstands (RSC) und das Magnesiumrisiko an einigen Stellen schränken die Verwendbarkeit für Bewässerungszwecke ein.

抽象

文章取样、分析和评价了印度East Bokaro煤田水的生活、灌溉和工业用水适用性。水样pH值在季风之前为6.78-8.11,季风期间为5.89-8.51,季风之后为6.95-8.48。主要阴离子为HCO -3 和SO 2-4 ,次要阴离子为Cl-、NO -3 和F-。44%水样的Fe浓度超过BIS饮用水标准上限。浊度、TDS、Fe、总厚度、SO 2-4 和Mg2+有时也会超过饮用水标准。矿井水的溶解总固体(TDS)、总硬度(TH)和SO 2-4 浓度使其不适于作生活或工业用水,局部较高的%Na、SAR、RSC和Mg-hazard杝限制了其农业用水适用性

Resumen

Se analizaron muestras de agua de mina colectados en el campo de carbón East Bokaro para relevar su aptitud para su uso doméstico, riego y propósitos industriales. El pH de las muestras se encontró en el rango de de 6,78-8,11 en la estación premonsónica, 5,89-8,51 en la estación monsónica y 6,95-8,48 en la estación postmonsónica. La química de aniones fue dominada por HCO3- y SO42-, con cantidades menores de Cl-, NO3- y F-. Las concentraciones de Fe superaron los límites máximos permitidos por BIS para agua de consumo en aproximadamente 44% de las muestras. La turbidez, TDS, Fe, dureza total (TH), SO42 y Mg2+ excedieron en algunos casos los límites permitidos para agua de consumo. La TDS, TH y las concentraciones de SO42- del agua de mina hacen inadecuado su uso para propósitos domésticos o para su uso industrial; altos valores de %Na, SAR, RSC y riesgo de Mg en ciertos lugares restringen su aptitud para su uso en agricultura en ciertos lugares.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alimonti A, Petrucci F, Krachler M (2000) Reference values for chromium, nickel and vanadium in urine of youngsters from the urban area of Rome. Environ Monit Assess 2(4):351–354

    Article  Google Scholar 

  2. Allen SK, Allen JM, Lucas S (1996) Concentration of contaminants in surface water samples collected in west-central Indiana impacted by acid mine drainage. Environ Geol 27:34–37

    Article  Google Scholar 

  3. Andre L, Franceschi M, Pouchan P, Atteia O (2005) Using geochemical data and modeling to enhance the understanding of groundwater flow in a regional deep aquifer, Aquitaine Basin, southwest of France. J Hydrol 305:40–62

    Article  Google Scholar 

  4. APHA (2005) Standard methods for the examination of water and waste water, 20th edn. American Public Health Association, Washington, DC

  5. Appelo CAJ, Postma D (1996) Geochemistry, groundwater and pollution. AA Balkema, Rotterdam

    Google Scholar 

  6. ATSDR (Agency for Toxic Substances and Disease Registry) (2000) Toxicological profile for Chromium. US Dept of Health and Human Services, Washington DC

    Google Scholar 

  7. Avudainayagam S, Megharaj M, Owens G (2003) Chemistry of chromium in soils with emphasis on tannery waste sites. Reviews of Environ Cont Toxico 178:53–91

    Google Scholar 

  8. Ayers RS, Wescot DW (1985) Water quality for irrigation; FAO Irrigation and Drainage Paper No. 20. Rev.1. F.A.O, Rome

    Google Scholar 

  9. Banks D, Younger PL, Arnesen R, Iversen ER, Banks SB (1997) Mine water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174

    Article  Google Scholar 

  10. Barceloux DG (1999) Selenium. J Toxicol Clin Toxicol 37:145–172

    Article  Google Scholar 

  11. BIS (2012) Drinking water specifications 2nd revision. Bureau of Indian Standards (IS 10500: 2012). New Delhi. ftp://law.resource.org/in/bis/S06/is.10500.2012.pdf

  12. BIS (Bureau of Indian Standards) (1987) Method of sampling and test (physical and chemical) for water and wastewater. IS: p 3025

  13. Carroll D (1962) Rainwater as a chemical agent of geologic processes: a review, USGS Water Supply Paper, p 1535

  14. Cerling TE, Pederson BL, Damm KLV (1989) Sodium-calcium ion exchange in the weathering of shales: implication for global weathering budgets. Geol 17:552–554

    Article  Google Scholar 

  15. Cheng H, Hu Y (2010) Lead (Pb) isotopic finger printing and its applications in lead pollution studies in China: a review. Environ Poll 158:1134–1146

    Article  Google Scholar 

  16. Choubey VD (1991) Hydrological and environmental impact of coal mining, Jharia coalfield, India. Environ Geol 17:185–194

    Google Scholar 

  17. Collins R, Jenkins A (1996) The impact of agricultural land use on stream chemistry in the middle hills of the Himalayas, Nepal. J Hydrol 185:71–86

    Article  Google Scholar 

  18. CPCB (Central Pollution Control Board) (2011) Impact of coal mine waste water discharge on surroundings with reference to metals. Bhopal. Retrieved from http://www.cpcb.nic.in

  19. Datta PS, Tyagi SK (1996) Major ion chemistry of groundwater of Delhi area: chemical weathering processes and groundwater flow regime. J Geol Soc India 47:179–188

    Google Scholar 

  20. Dreher GB, Finkelman RB (1992) Selenium mobilization in a surface coal mine, Powder River Basin., Wyoming. Environ Geol Water Sci 19(3): 157–167

    Article  Google Scholar 

  21. Eaton FM (1950) Significance of carbonates in irrigation waters. Soil Sci 39:123–133

    Article  Google Scholar 

  22. Fisher RS, Mullican WF (1997) Hydrochemical evolution of sodium sulphate and sodium chloride groundwater beneath the Northern Chihuahuan desert, Trans-Pecos, Texas, USA. Hydrogeol 5:4–16

    Article  Google Scholar 

  23. Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  24. Gaofeng Z, Yonghong S, Chunlin H, Qi F, Zhiguang L (2010) Hydrogeochemical processes in the groundwater environment of Heihe river basin, northwest China. Environ Geol 60:139–153

    Google Scholar 

  25. Gibbs RJ (1970) Mechanism controlling world water chemistry. Science 17:1088–1090

  26. Gupta DC (1999) Environmental aspects of selected trace elements associated with coal and natural waters of Pench valley coalfield of India and their impact on human health. Int J Coal Geol 40:133–149

    Article  Google Scholar 

  27. Han Y, Wang G, Cravotta CA, Hu W, Bian Y, Zhang Z, Liu Y (2013) Hydrogeochemical evolution of ordovician limestone ground water in Yanzhou, North China. Hydrol Process 27(16):2247–2257

    Article  Google Scholar 

  28. Hounslow AW (1995) Water quality data: analysis and interpretation. CRC Lewis Publ, New York City

    Google Scholar 

  29. Jeong CH (2001) Effect of land use and urbanization on hydrochemistry and contamination of groundwater from Taejon area, Korea. J Hydrol 253:194–210

    Article  Google Scholar 

  30. Johnson J, Schewel L, Graedel TE (2006) The contemporary anthropogenic chromium cycle. Environ Sci Technol 40:7060–7069

    Article  Google Scholar 

  31. Kaiser HF (1960) The application of electronic computers to factor analysis. Edu Psychol Meas 20:141–151

    Article  Google Scholar 

  32. Karanth KR (1989) Groundwater assessment, development and management. Tata McGraw-Hill Publ, New Delhi

    Google Scholar 

  33. Khan R, Israili SH, Ahmad H, Mohan A (2005) Metal pollution assessment in surface water bodies and its suitability for irrigation around the Nayevli lignite mines and associated industrial complex, Tamil Nadu, India. Mine Water Environ 24:155–161

    Article  Google Scholar 

  34. Kumar A, Singh PK (2016) Qualitative assessment of mine water of the western Jharia coalfield area, Jharkhand, India. Curr World Environ 11:301–311

    Article  Google Scholar 

  35. Kumar M, Ramanathan AL, Rao MS, Kumar B (2006) Identification and evaluation of hydrogeochemical processes in the groundwater environment of Delhi, India. Environ Geol 50:1025–1103

    Article  Google Scholar 

  36. Mahato MK, Singh PK, Singh AK, Tiwari AK (2016) Assessment of major ionic compositions and anthropogenic influences in the rainwater over a coal mining environment of Damodar River basin, India. Pollution 2:461–474

    Google Scholar 

  37. Mirenda RJ (1986) Acute toxicity and accumulation of zinc in the crayfish Orconectes virilise (Hagen). Bull Environ Contamin Toxicol 37:387–394

    Article  Google Scholar 

  38. Mishra RC, Sharma RP (1975) Petro-chemistry of Bundelkhand complex of central India. Indian Minerals J Geol Soc India 88(15):43–50

    Google Scholar 

  39. Mondal GC, Singh AK, Singh TB, Singh S, Singh KK, Tewary BK (2009) Assessment of air quality in and around West-Bokaro coalfield, Hazaribag. Ind J Environ Prot 29:577–591

    Google Scholar 

  40. Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  Google Scholar 

  41. Piper AM (1944) A graphic procedure in the geochemical interpretation of water-analysis. Trans Am Geophy Union 25:914–923

    Article  Google Scholar 

  42. Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Chemical Soc Publ, London, pp 154–155

    Google Scholar 

  43. Raja Rao CS (1987) Bulletin of geology survey of India, Sr. A; No.45: IV(I) 8–60, Geological Survey of India, Kolkata

    Google Scholar 

  44. Rose (2002) Comparative major ion geochemistry of piedmont streams in the Atlanta, Georgia region: possible effects of urbanization. Environ Geol 42:102–113

    Article  Google Scholar 

  45. Sarin MM, Krishnaswamy S, Dilli K, Somayajulu BLK, Moore WS (1989) Major ion chemistry of the Ganga-Brahmaputra river system: weathering processes and fluxes to the Bay of Bengal. Geochim Cosmochim Acta 53:997–1009

    Article  Google Scholar 

  46. Sarkar BC, Mahanata BN, Saikia K, Paul PR, Singh G (2007) Geoenvironmental quality assessment in Jharia coalfield, India, using multivariate statistics and geographic information system. Environ Geol 51:1177–1196

    Article  Google Scholar 

  47. Sastry MVA, Acharya SK, Shah SC, Satsangi PP, Ghosh SC, Raha PK, Singh G, Ghosh RN (1977) Stratigraphic lexicon of Gondwana formations of India. Geol Surv India Misc Publ 36:1–170

    Google Scholar 

  48. Sawyer CN, McCarty PL (1967) Chemistry of sanitary engineers, 2nd edn. McGraw Hill, New York

    Google Scholar 

  49. Sharma NL, Ram KSV (1966) Introduction to the geology of coal and Indian coal fields. Oriental Publishers, Jaipur

    Google Scholar 

  50. Singh G (1998) Impact of coal mining on mine water quality. Int J Mine Water 7:45–59

    Google Scholar 

  51. Singh AK, Mondal GC, Singh PK, Singh S, Singh TB, Tewary BK (2005) Hydrochemistry of reservoirs of Damodar River basin, India: weathering processes and water quality assessment. Environ Geol 8:1014–1028

    Article  Google Scholar 

  52. Singh AK, Mondal GC, Singh S, Singh PK, Singh TB, Tewary BK, Sinha A (2007) Aquatic geochemistry of Dhanbad district, coal city of India: source evaluation and quality assessment. J Geol Soc Ind 69:1088–1102

    Google Scholar 

  53. Singh AK, Mondal GC, Kumar S, Singh TB, Tewary BK, Sinha A (2008) Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ Geol 54:745–758

    Article  Google Scholar 

  54. Singh AK, Mahato MK, Neogi B, Singh KK (2010) Quality assessment of mine water in the Raniganj Coalfield Area. India Mine Water Environ 29:248–262

    Article  Google Scholar 

  55. Singh AK, Mahato MK, Neogi B, Mondal GC, Singh TB (2011) Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee–Balihari Mining Area, Jharia Coalfield, India. Mine Water Environ 30(3):197–207

    Article  Google Scholar 

  56. Singh AK, Mahato MK, Neogi B, Tewary BK, Sinha A (2012) Environmental geochemistry and quality assessment of mine water of Jharia coalfield, India. Environ Earth Sci 65:49–65

    Article  Google Scholar 

  57. Stumm W, Morgan JJ (1981) Aquatic Chemistry. Wiley Interscience, New York

    Google Scholar 

  58. Sun L, Gui H, Peng W (2014) Metals in groundwater from the Wolonghu coal mine, northern Anhui Province, China and their hydrological implications. Water Prac Technol 9:79–87

    Article  Google Scholar 

  59. Szabolcs I, Darab C (1964) The influence of irrigation water of high sodium carbonate content of soils. In: Szabolcs I (ed), Proc, 8th International Congress on Int Soc Soil Sci, Res Inst Soil Sci Agro Chem, Hungarian Acad Sci 803–812

  60. Tiwari AK, De Maio M, Singh PK, Mahato MK (2015) Evaluation of surface water quality by using GIS and a metal pollution index (HPI) model in a coal mining area, India. Bull Environ 95:304–310

    Article  Google Scholar 

  61. Tiwari AK, Singh PK, Mahato MK (2016) Environmental geochemistry and a quality assessment of mine water of the West Bokaro coalfield, India. Mine Water Environ 35:525–535

    Article  Google Scholar 

  62. Tiwary RK (2001) Environmental impact of coal mining on water regime and its management. Water Air Soil Pollut 132:185–199

    Article  Google Scholar 

  63. USEPA (United States Environmental Protection Agency) (1980) Exposure and risk assessment for zinc. Office of Water Regulations and Standards (WH-553). EPA440481016. PB85212009

  64. USEPA (United States Environmental Protection Agency) (2000) Summary of EPA coal combustion waste damage cases involving sand and gravel mines/pits/operations, http://www.epa.gov/epaoswer/other/ fossil/sandgrav.pdf

  65. USSL (US Salinity Laboratory) (1954) Diagnosis and improvement of saline and alkali soils. US Dept of Agriculture Hand Book, No 60

  66. WHO (World Health Organization) (2006) Guidelines for drinking-water quality, 3rd edit, WHO, Geneva

    Google Scholar 

  67. Wilcox LV (1955) Classification and use of irrigation waters. US Dept of Agriculture, Washington, DC, (Circular 969)

    Google Scholar 

  68. Wilcox LV (1958) Determining the quality of Irrigation Water, Agricultural Information Bulletin, No. 197. USDA, Washington, DC

    Google Scholar 

  69. Xiao HY, Liu CQ (2002) Sources of nitrogen and sulfur in wet deposition at Guiyang, southwest China. Atmos Environ 36:5121–5130

    Article  Google Scholar 

  70. Younger PL, Wolkersdorfer C (2004) Mining impacts on the fresh water environments: technical and managerial guidelines for catchment scale management. Mine Water Environ 23:S2–S80

    Article  Google Scholar 

  71. Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Kluwer Academic Publ, Dordrecht

    Book  Google Scholar 

  72. Zhang J, Huang WW, Letolle R, Jusserand C (1995) Major element chemistry of the Huanghe (Yellow River), China-weathering processes and chemical fluxes. J Hydrol 168:173–203

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the Ministry of Human Resource Development, GoI, New Delhi (for the ISM/JRF fellowship) and the University Grants Commission (for Dr. D. S. Kothari’s post-doctoral fellowship-OT/15-16/0017) for their financial support. The analytical facility provided by the CSIR-Central Institute of Mining & Fuel Research, Dhanbad, is gratefully acknowledged. Our hearty thanks to the editors and reviewers for their insightful comments and suggestions.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mukesh Kumar Mahato.

Electronic Supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mahato, M.K., Singh, P.K., Singh, A.K. et al. Assessment of Hydrogeochemical Processes and Mine Water Suitability for Domestic, Irrigation, and Industrial Purposes in East Bokaro Coalfield, India. Mine Water Environ 37, 493–504 (2018). https://doi.org/10.1007/s10230-017-0508-7

Download citation

Keywords

  • Mine water chemistry
  • Solute acquisition processes
  • Saturation index
  • Metals
  • Principal component analysis
  • Quality assessment