Advertisement

Mine Water and the Environment

, Volume 37, Issue 1, pp 166–173 | Cite as

Using a Risk-based Approach for Derivation of Water Quality Guidelines for Sulphate

  • E. C. Vellemu
  • P. K. Mensah
  • N. J. Griffin
  • O. N. Odume
  • C. G. Palmer
  • R. Dowse
Technical Article

Abstract

Sulphate is a major salt component in acid mine drainage and a crucial ecological concern in most coal and gold mining regions, globally. However, there remains a paucity of data on sulphate salinity toxicity on freshwater taxa. In this study, we hypothesised sensitivity differences for five freshwater species (Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata, and Oreochromis mossambicus) to increasing sulphate salinity concentrations after 240 h of exposure. Species sensitivity distributions (SSDs) were used to rank the sensitivity of tested species to the inorganic sulphate salts, which included magnesium sulphate (MgSO4), sodium sulphate (Na2SO4), and calcium sulphate (CaSO4) as models of mining salinisation in South Africa. The SSDs were also used to estimate appropriate protective concentrations of the salts for the tested species. Sensitivity differences were measured and Na2SO4 was the most toxic of the tested salts. A concentration of 0.020 g/L Na2SO4, 0.055 g/L CaSO4, and 0.108 g/L MgSO4 or a combined salts limit of 0.067 g/L would be protective of 95% of the populations of the five species tested; these all suggest that the 0.25 g/L compliance limit for South Africa is insufficient. Future studies should incorporate more species in the SSD approach to be coupled by field validations to further improve the ecological relevance of these findings.

Keywords

Mining Protective concentration Salinity Species sensitivity distribution Toxicity 

基于风险评估原理推求硫酸盐水质标准值

抽象

硫酸盐是多数煤矿区和金矿矿区酸性矿井废水的主要盐类和重要生态关注对象。然而,硫酸盐对淡水物种毒性研究仍非常少。研究假定五类淡水物种(Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata, and Oreochromis mossambicus)对硫酸盐浓度存在灵敏度差异。利用物种灵敏度分布(SSDs)进行试验物种的无机硫酸盐(包括硫酸锰、硫酸钠和硫酸钙)灵敏度排序,确定试验物种的硫酸盐保护浓度。Na2SO4毒性最强。五类淡水试验物种的无机硫酸盐保护浓度(使每类试验物种保护程度达95%)为硫酸钠0.20 g/L、硫酸钙0.055 g/L、硫酸镁0.108g/L或混合盐浓度0.067 g/L,进一步表明目前0.25 g/L硫酸盐柔性水质标准值对南非不适用。未来研究应在SSD方法中包含更多试验物种,并结合野外数据证实,提高研究成果的实际生态关联性。

Anwendung eines risikobasierten Ansatzes zur Ableitung von Wasserqualitätsvorgaben für Sulfat

Zusammenfassung

Sulfat ist ein wichtiger Bestandteil der Salze saurer Grubenwässer und eine wesentliche ökologische Belastung in den meisten Kohle- und Gold Abbaugebieten weltweit. Darüber hinaus besteht ein Mangel an Daten über die Giftigkeit von Sulfat-Salzen auf Frischwasser Lebewesen. In dieser Studie wurden Unterschiede der Empfindlichkeit von fünf Frischwasser Arten (Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata, and Oreochromis mossambicus) untersucht auf den Anstieg der Sulfat Konzentration nach 240 h Belastung. Die Empfindlichkeitsverteilung einzelner Arten (SSDS) wurde als Maßstab für die Sensitivität auf die anorganischen Sulfat-Salze, welche auch die Magnesium Sulfate (MgSO4), Natrium Sulfate (Na2SO4), und Kalzium Sulfate (CaSO4) als Modell Parameter für eine Versalzung von Bergwerkswässern in Süd Afrika enthielten. Diese Empfindlichkeitsverteilung (SSDS) wurde benutzt zur Abschätzung der noch unschädlichen Salz-Konzentration auf die Arten. Die Unterschiede in der Sensibilität wurden ermittelt mit dem Ergebnis, dass Natrium Sulfate (Na2SO4) die höchste Giftigkeit aufweisen. Eine Konzentration von 0.020 g/L Na2SO4, 0.055 g/L CaSO4 und 0.108 g/L MgSO4 oder ein kombinierter Salzgehalt von of 0.067 g/L ist für ca. 95% der getesteten Arten unschädlich. Dieses lässt die Vermutung zu, dass der Grenzwert von 0,25 g/L in Südafrika nicht ausreichend ist. In weiteren Studien sollten mehr Arten einem Test der Empfindlichkeitsverteilung (SSDS) unterzogen werden, um mit Feldversuchen die Belastbarkeit dieser Aussagen zu verbessern.

Usando una aproximación basada en riesgo para desarrollar una guía de calidad de agua para sulfato

Resumen

Sulfato es el principal componente salino en drenaje ácido de minas y tiene un rol ecológico crucial en la mayoría de las regiones mineras de oro y carbón. Sin embargo, sigue habiendo una escasez de datos de la toxicidad de los sulfatos sobre los taxones de agua dulce. En este estudio, hemos propuesto como hipótesis diferentes sensibilidades para cinco distintas especies de agua dulce (Adenophlebia auriculata, Burnupia stenochorias, Caridina nilotica, Pseudokirchneriella subcapitata y Oreochromis mossambicus) para incrementar las concentraciones de sulfato después de 240 h de exposición. Las distribuciones de sensibilidad de las especies (SSDs) fueron usados para ranquear la sensibilidad de las especies testeadas a sulfatos inorgánicos incluyendo sulfato de magnesio (MgSO4), sulfato de sodio (Na2SO4) y sulfato de calcio (CaSO4) como modelos de salinización de la minería en Sudáfrica. Los SSDs fueron también usados para estimar las concentraciones protectivas apropiadas de las sales para las especies testeadas. Se midieron las diferencias de sensibilidad y Na2SO4 resultó la más tóxica de las sales testeadas. Concentraciones de 0,020 g/L Na2SO4, 0,055 g/L CaSO4 y 0,108 g/L MgSO4 o un límite para las sales combinadas de 0,067 g/L serían protectoras del 95% de las poblaciones de las 5 especies testeadas; esto sugiere que el límite de 0,25 g/L para Sudáfrica es insuficiente. Estudios futuros deberían incorporar más especies en la aproximación SSD para ser acoplado a través de validaciones en campo para mejorar la relevancia ecológica de estos resultados.

Notes

Acknowledgements

Data reported herewith forms part of the research undertaken by E.C. Vellemu at the Unilever Centre for Environmental Water Quality (UCEWQ) in the Institute for Water Research, Rhodes University, South Africa, for a Ph.D. in Water Resources Science. The study was funded by Carnegie Corporation of New York under the auspices of the Regional Initiative in Science and Education (RISE) and UCEWQ. The Young Water Professionals (YWP) Publication Workshop Roadshow series in Port Elizabeth facilitated the preparation of this paper. The inputs from the four anonymous reviewers are greatly appreciated.

Supplementary material

10230_2017_480_MOESM1_ESM.pdf (89 kb)
Supplemental Fig. 1: Species sensitivity distribution (SSD) showing the sensitivity of the test species B. stenochorias, A. auriculata, C. nilotica, P. subcapitata, and O. mossambicus to Na2SO4. The upper and lower 95% confidence intervals are also shown (PDF 89 KB)
10230_2017_480_MOESM2_ESM.pdf (89 kb)
Supplemental Fig. 2: Species sensitivity distribution (SSD) showing the sensitivity of the test species B. stenochorias, A. auriculata, C. nilotica, P. subcapitata, and O. mossambicus to MgSO4. The upper and lower 95% confidence intervals are also shown (PDF 89 KB)
10230_2017_480_MOESM3_ESM.pdf (89 kb)
Supplemental Fig. 3: Species sensitivity distribution (SSD) showing the sensitivity of the test species B. stenochorias, A. auriculata, C. nilotica, P. subcapitata, and O. mossambicus to CaSO4. The upper and lower 95% confidence intervals are also shown (PDF 89 KB)

References

  1. ANZECC/ARMCANZ (Australian and New Zealand Environmental and Conservation Council and Agriculture and Resource Management Council of Australia and New Zealand) (2000) Australian and New Zealand guidelines for fresh and marine water qualityGoogle Scholar
  2. Bagatin R, Klemeš JJ, Reverberi AP, Huisingh D (2014) Conservation and improvements in water resource management: a global challenge. J Clean Prod 77:1–9CrossRefGoogle Scholar
  3. Berezina NA (2003) Tolerance of Freshwater Invertebrates to Changes in Water Salinity. Russ J Ecol 34:296–301CrossRefGoogle Scholar
  4. Cañedo-Argüelles M, Kefford BJ, Piscart C, Prat N, Schäfer RB, Schulz C (2013) Salinisation of rivers: an urgent ecological issue. Environ Pollut 173:157–167CrossRefGoogle Scholar
  5. Cañedo-Argüelles M, Hawkins C, Kefford B, Schäfer RB, Dyack BJ, Brucet S, Buchwalter D, Dunlop J, Frör O, Lazorchak J, Coring E, Fernandez R, Goodfellow W, González Achem AL, Hatfield-Dodds S, Karimov BK, Mensah P, Olson, Piscart C, Prat N, Ponsá S, Schulz MCJ, Timpano AJ (2016) Saving freshwater from salts: Ion-specific standards are needed to protect biodiversity. Am Assoc Adv Sci (AAAS) 351:914–916Google Scholar
  6. CCME (Canadian Council of Ministers of the Environment) (2007) A protocol for the derivation of water quality guidelines for the protection of aquatic life. In: Canadian Environmental Quality Guidelines, WinnipegGoogle Scholar
  7. Dallas H, Day J (2004) The effect of water quality variables on aquatic ecosystems: a review. Water Research Commission Report TT 224/04, Gezina, South AfricaGoogle Scholar
  8. Daniels WL, Zipper CE, Orndorff ZW (2014) Predicting release and aquatic effects of total dissolved solids from Appalachian USA coal mines. Int J Coal Sci Technol 1:152–162CrossRefGoogle Scholar
  9. Dowse R, Tang D, Palmer CG, Kefford BJ (2013) Risk assessment using the species sensitivity distribution method: data quality versus data quantity. Environ Toxicol Chem 32:1360–1369CrossRefGoogle Scholar
  10. DWA (Department of Water Affairs) (2011) Resource directed management of water quality: Planning level review of water quality in South Africa, Sub-seriesWQP 2.0, Pretoria, South AfricaGoogle Scholar
  11. ECETOC (European Centre for Ecotoxicology and Toxicology of Chemicals) (2014) Estimating toxicity thresholds for aquatic ecological communities from sensitivity distributions. http://www.ecetoc.org/wp-content/uploads/2014/12/ECETOC_WR_28.pdf. Accessed 13 Apr 2017
  12. Fox D (2011) SSDs—good idea, bad practice. Paper presented at SETAC Milan, May 18, 2011 and University of Lyon, May 23 2011Google Scholar
  13. Gerhardt A, Palmer C (1998) Copper tolerances of Adenophlebia auriculata (Eaton) 1884 (Insecta: Ephemeroptera) and Burnupia stenochorias Cawston 1932 (Gastropoda: Ancylidae) in indoor artificial streams. Sci Total Environ 215:217–229CrossRefGoogle Scholar
  14. Gerhardt A, Janssens De Bisthoven L, Soares AMVM (2004) Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ Pollut 130:263–274CrossRefGoogle Scholar
  15. Goetsch PA, Palmer CG (1997) Salinity tolerances of selected macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Arch Environ Contam Toxicol 32:32–41CrossRefGoogle Scholar
  16. Hagen TG, Douglas RW (2014) Comparative chemical sensitivity between marine Australian and Northern Hemisphere ecosystems: is an uncertainty factor warranted for water-quality-guideline setting? Environ Toxicol Chem 33:1187–1192CrossRefGoogle Scholar
  17. Heviánková S, Bestová I, Kyncl M (2014) The application of wood ash as a reagent in acid mine drainage treatment. Miner Eng 56:109–111CrossRefGoogle Scholar
  18. Holland A, Gordon A, Muller WJ (2011) Osmoregulation in freshwater invertebrates in response to exposure to salt pollution. Water Research Commission Report 1585/1/10, Pretoria, South AfricaGoogle Scholar
  19. Jia X, Wang Q, Cen K, Chen L (2016) An experimental study of CaSO4 decomposition during coal pyrolysis. Fuel 163:157–165CrossRefGoogle Scholar
  20. Jooste S, Rossouw J (2002) Hazard-based water quality ecospecs for the ecological reserve in fresh surface water resources. A Technical Support Document to the Ecological Water Quality Reserve: Second Draft. Pretoria, South AfricaGoogle Scholar
  21. Kefford BJ, Nugegoda D, Metzeling L, Fields EJ (2006) Validating species sensitivity distributions using salinity tolerance of riverine macroinvertebrates in the southern Murray–Darling Basin (Victoria, Australia). Can J Fish Aquat Sci 63:1865–1877CrossRefGoogle Scholar
  22. Madzivire G, Gitari WM, Vadapalli VRK, Ojumu TV, Petrik L (2011) Fate of sulphate removed during the treatment of circumneutral mine water and acid mine drainage with coal fly ash: Modelling and experimental approach. Miner Eng 24:1467–1477CrossRefGoogle Scholar
  23. Masindi V, Gitari MW, Tutu H, De Beer M (2016) Fate of inorganic contaminants post treatment of acid mine drainage by cryptocrystalline magnesite: Complimenting experimental results with a geochemical model. J Environ. Chem Eng 4:4846–4856Google Scholar
  24. McCarthy TS (2011) The impact of acid mine drainage in South Africa. S Afr J Sci 107:1–7CrossRefGoogle Scholar
  25. Meays C, Nordin R (2013) Ambient water quality guidelines for sulphate: technical appendix update April 2013. Water protection & sustainability branch, environmental sustainability and strategic policy Div, Ministry of Environment, BC, CanadaGoogle Scholar
  26. Mensah PK, Muller WJ, Palmer CG (2011) Acute toxicity of Roundup® herbicide to three life stages of the freshwater shrimp Caridina nilotica (Decapoda: Atyidae). Phys Chem Earth, Parts A/B/C 36:905–909CrossRefGoogle Scholar
  27. Mensah PK, Palmer CG, Muller WJ (2013) Derivation of South African water quality guidelines for Roundup® using species sensitivity distribution. Ecotoxicol Environ Saf 96:24–31CrossRefGoogle Scholar
  28. Miranda NAF, Perissinotto R, Appleton CC (2010) Salinity and temperature tolerance of the invasive freshwater gastropod Tarebia granifera. S Afr J Sci 106:1–8CrossRefGoogle Scholar
  29. Mount D, Gulley D, Hockett R, Garrison TD, Evans JM (1997) Statistical models to predict the toxicity of major ions to Ceriodaphnia dubia, Daphnia magna and Pimephales promelas (fathead minnows). Environ Toxicol Chem 16:2009–2019CrossRefGoogle Scholar
  30. Murthy LN, Panda SK, Shamasundar BA (2011) Physico-chemical and functional properties of proteins of tilapia (Oreochromis mossambicus). J Food Process Eng 34:83–107CrossRefGoogle Scholar
  31. Muschal M (2006) Assessment of risk to aquatic biota from elevated salinity—a case study from the Hunter River, Australia. J Environ Manage 79:266–278CrossRefGoogle Scholar
  32. Nielsen DL, Brock MA, Rees GN, Baldwin DS (2003) Effects of increasing salinity on freshwater ecosystems in Australia. Aust J Bot 51:655CrossRefGoogle Scholar
  33. OECD (Organisation for Economic Cooperation and Development) (1984) Algae growth inhibition test. OECD guideline for testing chemicals, Paris, FranceGoogle Scholar
  34. Palmer CG, Coleman HD (2004) Applied aquatic ecotoxicology: Sub-lethal methods, whole effluent testing and communication. Water Research Commission Report 1245/1/04, Gezina, South AfricaGoogle Scholar
  35. Palmer CG, Muller WJJ, Gordon AKK, Scherman PA, Coleman HD, Pakhamova L, de Kock E (2004) The development of a toxicity database using freshwater macroinvertebrates, and its application to the protection of South African water resources. S Afr J Sci 100:643–650Google Scholar
  36. Palmer CG, Rossouw N, Muller WJ, Scherman P (2005) The development of water quality methods within ecological Reserve assessments, and links to environmental flows. Water SA 31:161–170CrossRefGoogle Scholar
  37. Piscart C, Usseglio-Polatera P, Moreteau J-C, Beisel J-N (2006) The role of salinity in the selection of biological traits of freshwater invertebrates. Arch für Hydrobiol 166:185–198CrossRefGoogle Scholar
  38. Posthuma L, de Zwart D (2014) Encyclopedia of toxicology. Elsevier, AmsterdamGoogle Scholar
  39. Potgieter-Vermaak SS, Potgieter JH, Monama P, Van Grieken R (2006) Comparison of limestone, dolomite and fly ash as pre-treatment agents for acid mine drainage. Miner Eng 19:454–462CrossRefGoogle Scholar
  40. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLOS One. doi: 10.1371/journal.pone.0146021 Google Scholar
  41. Schäfer RB, Kefford BJ, Metzeling L, Liess M, Burgert S, Marchant R, Pettigrove V, Goonan P, Nugegoda D (2011) A trait database of stream invertebrates for the ecological risk assessment of single and combined effects of salinity and pesticides in south-east Australia. Sci Total Environ 409:2055–2063CrossRefGoogle Scholar
  42. Scherman PA, Palmer CG (2000) A protocol for acute toxicity testing using selected riverine invertebrates in artificial stream systems: version 1.0. Dept of Water and Forestry, South AfricaGoogle Scholar
  43. Signore A, Hendriks AJ, Lenders HJR, Leuven RSEW, Breure AM (2016) Development and application of the SSD approach in scientific case studies for ecological risk assessment. Environ Toxicol Chem 9999:1–13Google Scholar
  44. Simate GS, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ. Chem Eng 2:1785–1803Google Scholar
  45. Slaughter A, Palmer C, Muller W (2008) A chronic toxicity test protocol using Caridina nilotica (Decapoda†¯: Atyidae) and the generation of salinity toxicity data. African J. Aquat Sci 33:37–44CrossRefGoogle Scholar
  46. Tozsin G (2016) Inhibition of acid mine drainage and immobilization of heavy metals from copper flotation tailings using a marble cutting waste. Int J Miner Metall Mater 23:1–6CrossRefGoogle Scholar
  47. USEPA (United States Environmental Protection Agency) (1998) Guidelines for Ecological Risk Assessment. EPA/630/R-95/002F. Fed Regist 63:26846–26924Google Scholar
  48. USEPA (United States Environmental Protection Agency) (2009) Species Sensitivity Distribution Generator. https://www3.epa.gov/caddis/da_software_ssdmacro.html. Accessed 22 Aug 2016
  49. van Dam RA, Hogan AC, McCullough CD, Houston MA, Humphrey CL, Harford AJ (2010) Aquatic toxicity of magnesium sulfate, and the influence of calcium, in very low ionic concentration water. Environ Toxicol Chem 29:410–421CrossRefGoogle Scholar
  50. Warne MSJ (1998) Critical review of methods to derive water quality guidelines for toxicants and a proposal for a new framework. Supervising Scientist Report 135, Supervising Scientist. CanberraGoogle Scholar
  51. Warne MSJ, Palmer CG, Muller WJ (2004) Development of pilot guidelines for selected organic toxicants: 1. Protocol for aquatic ecosystem guideline development. Dept of Water Affairs, PretoriaGoogle Scholar
  52. Xu F, Li Y, Wang Y, He W, Kong XZ, Qin N, Liu WX, Wu, WJ, Jorgensen SE (2015) Key issues for the development and application of the species sensitivity distribution (SSD) model for ecological risk assessment. Ecol Indic 54:227–237CrossRefGoogle Scholar
  53. Zalizniak L, Kefford BJ, Nugegoda D (2007) Effects of different ionic compositions on survival and growth of Physa acuta. Aquat Ecol 43:145–156CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Unilever Centre for Environmental Water Quality, Institute for Water ResearchRhodes UniversityGrahamstownSouth Africa
  2. 2.Biotechnology and Environmental Biology, School of Applied SciencesRoyal Melbourne Institute of TechnologyMelbourneAustralia

Personalised recommendations