Advertisement

Mine Water and the Environment

, Volume 37, Issue 1, pp 137–150 | Cite as

Evaluation of Geothermal Potential in the Vicinity of the Flooded Sierra Almagrera Mines (Almeria, SE Spain)

  • Andrés NavarroEmail author
  • Narcís Carulla
Technical Article
  • 121 Downloads

Abstract

We evaluated the hydrogeochemical characteristics of water from the old flooded Sierra Almagrera mines to determine the possible origin of its geothermal fluids, to establish a geological–geochemical model of the geothermal system, and evaluate the site’s geothermal potential. The mine water contained high concentrations of chloride (59.6 g/L), Na (28 g/L), K (1.75 g/L), Ca (7.2 g/L), Mg (0.63 g/L), and Li (66 mg/L), especially in water from the old dewatering system. Metal concentrations were especially elevated in the old mine shafts, with high amounts of Fe (1990 mg/L), Mn (600 mg/L), Zn (460 mg/L), Pb (4 mg/L), and Ni (11.4 mg/L). The Cl/Br molar ratios of the water was high, which may indicate the possible leaching of natural halite from the evaporite deposits in the aquifer recharge area. The mine water had the most elevated temperatures and are, possibly, representative of the extent of equilibration in most of the reservoir. The estimated mean temperatures in the geothermal reservoir, based on the triangular (Giggenbach) Na–K–Mg diagram, was 190 °C for equilibrated waters, which may justify the development of this geothermal resource. The geothermal characteristics imply convection of groundwater to 2500–3000 m below sea level, in agreement with the hydrodynamic model proposed.

Keywords

Mine water Geothermometer Saline groundwater Hydrogeochemistry 

Untersuchung des geothermischen Potenzials in der Umgebung der gefluteten Sierra Almagrera Mine (Almeria, SE Spanien)

Zusammenfassung

In dieser Studie wird die Wasserbeschaffenheit des gefluteten Altbergbaus Sierra Almagrera charakterisiert, um eine mögliche Genese der geothermalen Fluide zu untersuchen. Hiermit soll das standortspezifische Potential untersucht und ein geologisch-geochemisches Modell des geothermalen System etabliert werden. Das Bergbauwasser, besonders das Wasser des alten Entwässerungssystems, zeigt hohe Konzentrationen an Cl (59.6 g L-1), Na (28 g L-1), K (1.75 g L-1), Ca (7.2 g L-1), Mg (0.63 g L-1) und Li (66 mg L-1). In den alten Schächten wurden insbesondere hohe Metallkonzentrationen vorgefunden, z. B. Fe (1990 mg L-1), Mn (600 mg L-1), Zn (460 mg L-1), Pb (4 mg L-1) und Ni (11.4 mg L-1). Das molare Cl/Br Verhältnis des Wassers ist erhöht, was vermutlich auf Ablaugungsvorgänge von geogenen Halit im Neubildungsgebiet des Aquifers hindeutet. Das Bergbauwasser weist erhöhte Temperaturen auf und repräsentiert somit möglicherweise das Gleichgewicht, in dem das gesamte Reservoir steht. Die mit dem Na-K-Mg (Giggenbach)-Dreiecksdiagramm berechnete Mitteltemperatur des geothermischen Reservoirs beträgt 190 °C, was eine Erschließung dieser geothermischen Ressource begründen könnte. Entsprechend den hydrodynamischen Modellvorstellungen lässt die geothermische Charakteristik auf Wasserkonvektionen bis in Tiefen von 2500 bis 3000 m unter Meeresspiegel schließen.

充水矿井Sierra Almagrera (Almeria, SE Spain)的地热潜力评价

抽象

评价了充水老矿井Sierra Almagrera的水文地球化学特征,以判别地下热源、建立地热系统地质-水文球化学模型和评价研究区地热潜力。矿井水(尤其在老疏水系统内)含有高浓度氯(59.6 g/L)、钠 (28 g/L)、钾 (1.75 g/L)、钙(7.2 g/L)、镁 (0.63 g/L)和锂(66 mg/L)。废弃立井中水的金属离子浓度已显著提高,铁(1990 mg/L)、锰(600 mg/L)、锌 (460 mg/L)、铅(4 mg/L)和镍(11.4 mg/L)。水样氯溴摩尔比(Cl/Br)较高,表明含水层补给区的蒸发岩盐曾经历自然淋滤过程。大幅升高的矿井水温度显示地下水系统均衡程度。基于Na-K-Mg三角图方法估计了均衡地热水体的平均温度为190 ºC,证明了地下热源存在。与地下水动力学模型一致,该特征亦证明了海平面以下2500-3000m地下水对流过程。

Evaluación del potencial geotermal en los alrededores de las Minas inundadas de Sierra Almagrera (Almería, SE España)

Resumen

Evaluamos las características hidrogeoquímicas del agua de las viejas minas inundadas de Sierra Almagrera para determinar el origen posible de sus fluidos geotérmicos, establecer un modelo geológico-geoquímico del sistema geotermal y evaluar el potencial geotermal del sitio. El agua de la mina contenía altas concentraciones de cloruro (59,6 g/L), Na (28 g/L), K (1,75 g/L), Ca (7,2 g/L), Mg (0,63 g/L) y Li (66 mg/L), especialmente en el agua proveniente del viejo sistema de desagote. Las concentraciones metálicas fueron especialmente elevadas en los viejos pozos de la mina con altas cantidades de Fe (1990 mg/L), Mn (600 mg/L), Zn (460 mg/L), Pb (4 mg/L) y Ni (11,4 mg/L). La relación molar Cl/Br del agua fue elevada lo cual indica la posible lixiviación de halita natural desde los depósitos de evaporita en la zona de recarga del acuífero. Las aguas de la mina tenían elevadas temperaturas y son, posiblemente, representativas del grado de equilibrio en gran parte del reservorio. Las temperaturas medias estimadas en el reservorio geotermal, basada en el diagrama triangular (Giggenbach) Na-K-Mg fue 190ºC para las aguas que podría justificar el desarrollo de este recurso geotermal. Las características geotermales implican convección de agua subterránea a 2500-3000 m debajo del nivel del mar, en acuerdo con el modelo hidrodinámico propuesto.

Notes

Acknowledgements

Financial support was provided through an agreement between the Polytechnic University of Catalonia (UPC) and the private sector (Project C-7300). Funding was also received from the Spanish Ministry of Science and Technology (Projects REN2003-09247-C04-03 and ENE2006-13267-C05-03), in collaboration with the Research Center for Energy, Environment and Technology (CIEMAT).

References

  1. Alcalá FJ, Custodio E (2008) Using the Cl/Br ratio as a tracer to identify the origin of salinity in aquifers in Spain and Portugal. J Hydrol 359:189–207CrossRefGoogle Scholar
  2. Alvarez F (1991) Aspectos estructurales y petrológicos del vulcanismo neógeno en la parte oriental de Sierra Almagrera (Cordilleras Béticas Orientales). Studia Geol Salmant XXVII:33–44 (in Spanish)Google Scholar
  3. Banks D, Younger PL, Arnesen NT, Iversen ER, Banks SB (1997) Mine-water chemistry: the good, the bad and the ugly. Environ Geol 32:157–174CrossRefGoogle Scholar
  4. Benito R, López-Ruiz J, Cebriá JM, Hertogen J, Doblas M, Oyarzun R, Demaiffe D (1999) Sr and O isotope constraints on source and crustal contamination in the high-K calc-alcaline and shoshonitic neogene volcanic rocks of SE Spain. Lithos 46:773–802CrossRefGoogle Scholar
  5. Bethke CM, Yeakel S (2011) The Geochemist’s workbench release 9.0. GWB essentials guide. Aqueous Solutions LLC, ChampaignGoogle Scholar
  6. Booth-Rea G, Azañón JM, Azor A, García-Dueñas V (2004) Influence of strike-slip fault segmentation on drainage evolution and topography. A case study: the Palomares fault zone (southeastern Betics, Spain). J Struct Geol 26:1615–1632CrossRefGoogle Scholar
  7. Brown KL, Simmons SF (2003) Precious metals in high-temperature geothermal systems in New Zealand. Geothermics 32:619–625CrossRefGoogle Scholar
  8. Camprubí A, Albinson T (2006) Los depósitos epitermales: revisión sobre el estado actual de su conocimiento, métodos de estudio y presencia en México. B Soc Geol Mex LVII(4):1–55 (in Spanish)Google Scholar
  9. Canet C, Prol-Ledesma RM, Proenza JA, Rubio-Ramos MA, Forrest MJ, Torres-Vera MA, Rodríguez-Díaz AA (2005) Mn–Ba–Hg mineralization at shallow submarine hydrothermal vents in bahía Concepción, Baja California Sur, México. Chem Geol 224:96–112CrossRefGoogle Scholar
  10. Carulla N (2012) Las salmueras mineras, termales y litiníferas de Sierra Almagrera (NE Almería). In: Proceedings VIII Congreso Geológico de España, Oviedo, SpainGoogle Scholar
  11. Cerón JC, Martín-Vallejo M, García-Rossell L (2000) CO2-rich thermomineral groundwater in the Betic Cordilleras, southeastern Spain: genesis and tectonic implications. Hydrogeol J 8:209–217CrossRefGoogle Scholar
  12. De Sierra A (1928) Los Hierros de Almería y Granada. Mem I Geol Min España Vol. V (3), Madrid (in Spanish)Google Scholar
  13. Doveri M, Lelli M, Marini L, Raco B (2010) Revision, calibration, and application of the volume method to evaluate the geothermal potential of some recent volcanic areas of latium, Italy. Geothermics 39:260–269CrossRefGoogle Scholar
  14. Dyja V (2014) Interaction entre fluides de différents réservoirs lors de l´evolution d´un prisme orogénique en contexte de déformation partitionnée: les Cordillères bétiques internes (Espagne). Implicactions sur le transfert de métaux dans la croûte. Thèse, Univ de Lorraine, http://www.theses.fr/2014LORR0029. Accessed 14 Feb 2016 (in Spanish)
  15. Ezquerra del Bayo J (1844) Datos y observaciones sobre la industria minera con una descripción característica de los minerales útiles, cuyo beneficio puede ser objeto de las empresas. 1a Edit, Imprenta Antonio Yanes, Madrid (in Spanish)Google Scholar
  16. Farber E, Vengosh A, Gavrieli I, Marie A, Bullen TD, Mayer B, Pola A, Shavit U (2007) The geochemistry of groundwater resources in the Jordan Valley: the impact of the Rift Valley brines. Appl Geochem 22:494–514CrossRefGoogle Scholar
  17. Fournier RO (1977) Chemical geothermometres and mixing models for geothermal systems. Geothermics 5:41–50CrossRefGoogle Scholar
  18. Fournier RO (1979) A revised equation for the Na–K geothermometer. Geoth Res T 3:221–224Google Scholar
  19. Fournier RO, Truesdell AH (1973) An empirical Na–K–Ca geothermometer for natural waters. Geochim Cosmochim Acta 37:1255–1275CrossRefGoogle Scholar
  20. Giggenbach WF (1988) Geothermal solute equilibria. Derivation of Na–K–Mg–Ca geoindicators. Geochim Cosmochim Acta 52:2749–2765CrossRefGoogle Scholar
  21. Gómez Iribarne B (1908) Desagüe de Sierra Almagrera. Estadística Minera 142–149Google Scholar
  22. Hamm V, Sabet BB (2010) Modelling of fluid flow and heat transfer to assess the geothermal potential of a flooded coal mine in Lorraine, France. Geothermics 39:177–186CrossRefGoogle Scholar
  23. Han DM, Liang X, Jin MG, Currell MJ, Song XF, Liu CM (2010) Evaluation of groundwater hydrochemical characteristics and mixing behavoir in the Daying and Qicun geothermal systems, Xinzhou Basin. J Volcan Geotherm Res 189:92–104CrossRefGoogle Scholar
  24. Ingebritsen S, Sanford W, Neuzil C (2008) Groundwater in Geological Processes, 2nd edn. Cambridge University Press, New York CityGoogle Scholar
  25. Janson E, Gzyl D, Banks D (2009) The occurrence and quality of mine water in the Upper Silesian coal basin, Poland. Mine Water Environ 28:232–244CrossRefGoogle Scholar
  26. Jardón S, Ordóñez A, Álvarez R, Cienfuegos P, Loredo J (2013) Mine water for energy and water supply in the central coal basin of Asturias (Spain). Mine Water Environ 32:139–151CrossRefGoogle Scholar
  27. Kharaka YK, Lico MS, Law-Leroy M (1982) Chemical geothermometers applied to formation waters, Gulf of Mexico and California basins. Abstract. AAPG Bull 66:588Google Scholar
  28. Kranz K, Dillenardt J (2010) Mine water utilization for geothermal purposes in Freiberg, Germany: determination of hydrogeological and thermophysical rock parameters. Mine Water Environ 29:68–76CrossRefGoogle Scholar
  29. López C, Peláez JA, Peinado MA, Sanz de Galdeano C (1993) Neotectónica y Sismicidad de Cuevas del Almanzora. In: García-Rossell L (ed), Recursos Naturales y Medio Ambiente de Cuevas del Almanzora, 1st edn. IEA, Almería, pp 169–184 (in Spanish)Google Scholar
  30. Loredo C, Roqueñí N, Ordóñez A (2016) Modelling flow and heat transfer in flooded mines for geothermal energy use: a review. Int J Coal Geol 164:115–122CrossRefGoogle Scholar
  31. Lynne BY (2012) Mapping vent to distal-apron hot spring paleo-flow pathways using siliceous sinter architecture. Geothermics 43:3–24CrossRefGoogle Scholar
  32. Mazzini A, Svensen H, Etiope G, Onderdon N, Bans D (2011) Fluid origin, gas fluxes and plumbing system, in the sediment-hosted Salton Sea Geothermal System (California, USA). J Volcan Geotherm Res 20:67–83CrossRefGoogle Scholar
  33. McKibben MA, Williams AE, Elderst WA, Eldridge CS (1987) Saline brines and metallogenesis in a modern sediment-filled rift: the Salton Sea geothermal System, California, USA. Appl Geochem 2:563–578CrossRefGoogle Scholar
  34. Navarro A (2016) Las fundiciones de Sierra Almagrera (Almería): Características generales y Geoquímica de las escorias. In: Proceedings IX international congress about historic mining and metallurgy in SW Europe, Madrid, SpainGoogle Scholar
  35. Navarro A, Martínez F (2010) Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water Environ 29:53–67CrossRefGoogle Scholar
  36. Navarro A, Cardellach E, Mendoza JL, Corbella M, Domènech LM (2008) Metal mobilization from base-metal smelting slag dumps in Sierra Almagrera (Almería, Spain). Appl Geochem 23:895–913CrossRefGoogle Scholar
  37. Navarro A, Font X, Viladevall M (2011) Geochemistry and groundwater contamination in the La Selva geothermal system (Girona, Northeast Spain). Geothermics 40:275–285CrossRefGoogle Scholar
  38. Nicholson K (1993) Geothermal fluids: chemistry and exploration techniques. Springer, BerlinCrossRefGoogle Scholar
  39. Porowski A, Dowgiallo J (2009) Application of selected geothermometers to exploration of low-enthalpy thermal water: the Sudetic geothermal region in Poland. Environ Geol 58:1629–1638CrossRefGoogle Scholar
  40. Raymond J, Therrien R (2008) Low-temperature geothermal potential of the flooded Gaspé mines, Québec, Canada. Geothermics 37:189–210CrossRefGoogle Scholar
  41. Renz A, Rühaak W, Schätzl P, Diersch H-JG (2009) Numerical modeling of geothermal use of mine water: challenges and examples. Mine Water Environ 28:2–14CrossRefGoogle Scholar
  42. Rybach L (1988) Determination of heat production rate. In: Haenel R, Rybach L, Stegena L (eds) Handbook of terrestrial heat flow density determination. Springer, Dordrecht, pp 125–142Google Scholar
  43. Sanjuan B, Millot R, Dezayes C, Brach M (2010) Main characteristics of the deep geothermal brine (5 km) at Soultz-sous-Fôrets (France) determined using geochemical and tracer test data. Comptes Rendus Geosci 342: 546–559CrossRefGoogle Scholar
  44. Saunders JA, Unger DL, Kamenov GD, Faye M, Hames WE, Utterback WC, (2008) Genesis of middle Miocene Yellowstone hotspot-related bonanza epithermal Au–Ag deposits, northern Great Basin, USA. Mineral Depos 43: 715–734Google Scholar
  45. Sherlock RL (2005) The relationship between the McLaughlin gold-mercury deposit and active hydrothermal systems in the Geysers-Clear Lake area northern Coast Ranges, California. Ore Geol Rev 26:349–382CrossRefGoogle Scholar
  46. Souviron R (1898) El desagüe de Sierra Almagrera. Revista Minera Metalúrgica y de Ingeniería 49:272–331Google Scholar
  47. Stokes M (2008) Plio-Pleistocene drainage development in an inverted sedimentary basin: Vera basin, Betic Cordillera, SE Spain. Geomorphology 100:193–211CrossRefGoogle Scholar
  48. Truesdell AH (1976) Summary of section III: geochemical techniques in exploration. In: Proceedings 2nd United Nations Symposium on the Development and Use of Geothermal Resources. San Francisco, 1975, vol 1. US Government Printing Office, Washington DCGoogle Scholar
  49. Uhlík J, Baier J (2012) Model evaluation of thermal energy potential of hydrogeological structures with flooded mines. Mine Water Environ 31:179–191CrossRefGoogle Scholar
  50. Wang Q, Wang X, Hou Q (2016) Geothermal water at a coal mine: from risk to resource. Mine Water Environ 35:294–301CrossRefGoogle Scholar
  51. Watzlaf GR, Ackman TE (2006) Underground mine water for heating and cooling using geothermal heat pump systems. Mine Water Environ 25:1–14CrossRefGoogle Scholar
  52. Wolkersdorfer Ch (2008) Water Management at Abandoned Flooded Underground Mines. Fundamentals, tracer tests, modelling, water treatment. Springer, BerlinGoogle Scholar
  53. Younger PL (2013) Hydrogeological challenges in a low-carbon economy. Q J Eng Geol Hydroge. doi: 10.1144/qjegh2013-063 Google Scholar
  54. Younger PL, Boyce AJ, Waring AJ (2015) Chloride waters of Great Britain revisited: from subsea formation waters to onshore geothermal fluids. P Geol Assoc 126: 453–465CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Fluid MechanicsUniversitat Politècnica de CatalunyaTerrassaSpain
  2. 2.Geólogos AsesoresTarragonaSpain

Personalised recommendations