Advertisement

Mine Water and the Environment

, Volume 37, Issue 2, pp 366–375 | Cite as

Roadway Backfill Coal Mining to Preserve Surface Water in Western China

Technical Article

Abstract

In China’s western eco-environmental area, water resources are very valuable. Longwall mining can cause these shallow water resources to leak, so most mines in this area use room-and pillar mining to prevent water inrush and protect water resources. However, over time, coal pillars can become unstable and collapse. To protect water resources and improve coal recovery, roadway backfill coal mining was proposed for the Ershike Coal Mine. The mechanical properties of backfill materials with different ratios of aeolian sand, fly ash, and Portland cement were studied in the laboratory to obtain an optimal ratio. Also, a 2-D physical simulation model was established to explore the development of mining-induced fractures and to conduct a stability analysis of aquiclude strata. The results can be used to guide coal mining in the study area and to protect local water resources.

Keywords

Aquiclude Backfilling materials Physical modeling Water inrush 

掘巷充填采煤保护中国西部地表水资源

抽象

中国西部半干旱区水资源宝贵。长壁回采会引起浅部水资源渗漏,因此西部矿区多采用房柱式开采防止煤矿突水和保护水资源。为保护水资源和提高煤炭回采率,在Ershike矿提出掘巷充填回采法。采用室内试验研究了风积沙、粉煤灰和硅酸盐水泥不同配比充填材料的力学性质,以获得最优配比。同时,利用二维物理模拟模型研究了采矿裂隙发育特征和隔水层稳定性。研究结果可指导区内煤炭开采 和水资源保护。

Rückverfüllung von Kohlebergwerken zur Schonung von Oberflächenwasser in Westchina

Zusammenfassung

In Westchinas Naturschutzreservat sind die Wasserressourcen sehr kostbar. Der Streckenbergbau kann zur Versickerung dieser wertvollen Wasserressourcen führen. Daher verwenden die meisten Bergwerke in diesem Gebiet die Pfeilerbruchbauweise, um das Eindringen des Wassers zu verhindern und die Wasserressourcen zu schonen. Mit der Zeit können die Pfeiler allerdings instabil werden und zusammenbrechen. Für die Ershike Kohlemine wurde die Rückverfüllung der Strecken empfohlen, um die Wasserressourcen zu schonen und die Kohleausbeute zu erhöhen. Zur Bestimmung der optimalen Zusammensetzung des Versatzmaterials, bestehend aus unterschiedlichen Anteilen von äolischem Sand, Flugasche und Portlandzement, wurden die mechanischen Eigenschaften im Labor untersucht. Zusätzlich wurde ein physikalisches zweidimensionales Modell entwickelt, um die bergbauinduzierten Brüche zu untersuchen und eine Festigkeitsanalyse der Grundwasserstauer durchzuführen. Die Ergebnisse können genutzt werden, um den Kohleabbau im Untersuchungsgebiet zu begleiten und lokale Wasserressourcen zu schützen.

Relleno en la minería de carbón para preservar el agua de superficie en China occidental

Resumen

En el área eco-ambiental occidental de China, los recursos hídricos son muy valiosos. La minería puede hacer que estos recursos de agua poco profundos tengan fugas, por lo que la mayoría de las minas en esta área usan la minería de cuartos y pilares para prevenir la entrada de agua y proteger los recursos hídricos. Sin embargo, con el tiempo los pilares de carbón pueden volverse inestable y colapsar. Para proteger los recursos de agua y mejorar la recuperación de carbón, se propuso minería de carbón de relleno del camino para la mina de carbón de Ershike. Se obtuvieron las propiedades mecánicas de los materiales de relleno con diferentes relaciones de arena eólica, cenizas y cemento Portland para obtener una relación óptima. También, se estableció un modelo físico de simulación en 2-D para explorar el desarrollo de las fracturas inducidas por la minería y permitir un análisis de estabilidad del estrato acuicludo. Los resultados pueden ser usados para guiar la minería de carbón en el área de estudio para proteger los recursos locales de agua.

Notes

Acknowledgements

This research was financially supported by the Fundamental Research Funds for the Central Universities (2017XKZD13).

References

  1. An BF, Miao XX, Zhang JX, Ju F, Zhou N (2016) Overlying strata movement of recovering standing pillars with solid backfilling by physical simulation. Int J Min Sci Technol 26(2):301–307CrossRefGoogle Scholar
  2. Bian ZF, Miao XX, Lei SG, Chen SE, Wang WF, Struthers S (2012) The challenges of reusing mining and mineral-processing wastes. Science 337:702–703CrossRefGoogle Scholar
  3. Deng XJ, Zhang JX, Zhou N, An TL, Guo S (2014) The research and application of longwall-roadway cemented backfilling mining technology in extra-thick coal seam. J Min Saf Eng 31(6):857–862Google Scholar
  4. Deng XJ, Zhang JX, Kang T, Han XL (2016) Strata behavior in extra-thick coal seam mining with upward slicing backfilling technology. Int J Min Sci Technol 26(4):587–592CrossRefGoogle Scholar
  5. Ghirian A, Fall M (2014) Coupled thermo-hydro-mechanical–chemical behaviour of cemented paste backfill in column experiments: Part II: mechanical, chemical and microstructural processes and characteristics. Eng Geol 170(1):11–23CrossRefGoogle Scholar
  6. He XW, Yang J, Shao LN, Li FQ, Wang X (2008) Problem and countermeasure of mine water resource regeneration in China. J China Coal Soc 33(1):63–66Google Scholar
  7. Huang YL, Zhang JX, Zhang Q, Nie SJ (2011a) Backfilling technology of substituting waste and fly ash for coal underground in China coal mining area. Environ Eng Manag J 10(6):769–775Google Scholar
  8. Huang YL, Zhang JX, An BF, Zhang Q (2011b) Overlying strata movement law in fully mechanized coal mining and backfilling longwall face by similar physical simulation. J Min Sci 47(5):618–627CrossRefGoogle Scholar
  9. Jiang HQ, Miao XX, Zhang JX, Liu SW (2016) Gateside packwall design in solid backfill mining—a case study. Int J Min Sci Technol 26(2):261–265CrossRefGoogle Scholar
  10. Li PY (2016) Groundwater quality in western china: challenges and paths forward for groundwater quality research in western China. Expo Health (London) 8(3):305–310CrossRefGoogle Scholar
  11. Li PY, Qian H, Howard KWF, Wu JH (2015) Building a new and sustainable “silk road economic belt”. Environ. Earth Sci 74(10):7267–7270CrossRefGoogle Scholar
  12. Liu TF, Ren ZS (2009) The mine water treatment and development analysis in west mining area. Shaanxi Coal 28(1):11–13 (in Chinese) Google Scholar
  13. Liu TF, Jiang DL, Wang Y (2010) Discussion on integration technology of mine water treatment for medium and small mines in west part of China. Coal Eng 11:81–83Google Scholar
  14. Miao XX, Zhang JX, Guo GL (2010) Study on waste-filling method and technology in fully-mechanized coal mining. J China Coal Soc 35(1):1–6Google Scholar
  15. Nasir O, Fall M (2010) Coupling binder hydration, temperature and compressive strength development of underground cemented paste backfill at early ages. Tunn Undergr Space Technol 25(1):9–20CrossRefGoogle Scholar
  16. Newman AM, Rubio E, Caro R, Weintraub A, Eurek K (2010) A review of operations research in mine planning. Interfaces 40(3):222–245CrossRefGoogle Scholar
  17. Sun Q, Zhang JX, Ju F, Li LY, Zhao X (2015) Research and application of schemes for constructing concrete pillars in large section finishing cut in backfill coal mining. Int J Min Sci Technol 25(6):915–920CrossRefGoogle Scholar
  18. Sun Q, Zhang JX, Yin W, Zhou N, Liu Y (2017) The study of stability of surrounding rock and characters of overburden strata movement with longwall roadway backfill coal mining. J China Coal Soc 42(02):404–412Google Scholar
  19. Verma AK (2014) A comparative study of various empirical methods to estimate the factor of safety of coal pillars. Am J Min Metall 2(1):17–22Google Scholar
  20. Verma AK, Singh TN (2013) Prediction of water quality from simple field parameters. Environ Earth Sci 69(3):821–829CrossRefGoogle Scholar
  21. Verma AK, Saini MS, Singh TN, Avi D, Bajpai, RK (2013) Effect of excavation stages on stress and pore pressure changes for an underground nuclear repository. Arab J Geosci 6(3):635–645CrossRefGoogle Scholar
  22. Wang LG, Wang ZS, Huang JH (2012) Prediction on the height of water-flowing fractured zone for shallow Seam covered with thin bedrock and thick wind blown sands. J Min Saf Eng 29(5):607–612Google Scholar
  23. Xie HP, Wang JH, Shen BH, Liu JZ, Jiang PF, Zhou HW, Liu H, Wu G (2012) New idea of coal mining: scientific mining and sustainable mining capacity. J China Coal Soc 37(7):1069–1079Google Scholar
  24. Zhang JC, Shen BH (2004) Coal mining under aquifers in China: a case study. Int J Rock Mech Min Sci 41(4):629–639CrossRefGoogle Scholar
  25. Zhang JX, Huang YL, Zhang Q, Li M, Liu Z (2014) Test on mechanical properties of solid backfill materials. Mater Res Innov 18(S2):S2-960–S2-965CrossRefGoogle Scholar
  26. Zhang JX, Zhang Q, Sun Q, Gao R, Germain D, Abro S (2015) Surface subsidence control theory and application to backfill coal mining technology. Environ Earth Sci 74(2):1439–1448CrossRefGoogle Scholar
  27. Zhang JX, Sun Q, Zhou N, Jiang HQ, Germain D, Abro S (2016) Research and application of roadway backfill coal mining technology in western coal mining area. Arab J Geosci 9(10):1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Qiang Sun
    • 1
    • 2
  • Jixiong Zhang
    • 1
    • 2
  • Nan Zhou
    • 1
    • 2
  • Wenyue Qi
    • 1
    • 2
  1. 1.China University of Mining and TechnologyXuzhouChina
  2. 2.Key Laboratory of Deep Coal Resource Mining, School of Mines, Ministry of Education of ChinaChina University of Mining and TechnologyXuzhouChina

Personalised recommendations