Skip to main content
Log in

Performance of Sulfate-reducing Passive Bioreactors for the Removal of Cd and Zn from Mine Drainage in a Cold Climate

硫酸盐还原生物反应器去除Cold Clinate矿井废水中镉和锌

Leistungsvermögen von sulfatreduzierenden passiven Bioreaktoren beim Cd- und Zn-Entzug aus Bergbauabwasser unter kühlen Klimabedingungen

Comportamiento de biorreactores sulfato-reductores pasivos para la remoción de Cd y Zn desde drenaje de mina en clim frío

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Passive treatment is a promising, green technology that is increasingly being used for mine drainage treatment. However, several challenges remain concerning its implementation in locations where the temperature of the water remains cold year round and bacterial growth is limited by the low temperatures. The impacts of cold on the activity of sulfate-reducing bacteria (SRB) and the subsequent removal of Cd and Zn from acid mine drainage were studied by conducting static tests at 4.5 °C over a 90 day period. Different sources of carbon were tested to support native SRB: molasses, methanol, and a mix of molasses/methanol at different concentrations. The reactors were monitored biweekly, and the pH, oxido-reduction potential, and residual concentrations of Zn, Cd, sulfate, and total organic carbon were measured. The use of carbon sources clearly improved bacterial activity and consequently, the removal of Cd and Zn by precipitation as sulfide. Up to 94.8% of the Zn and up to 99.4% of the Cd were removed after 90 days, reducing metal concentrations below the discharge limits ([Cd] < 50 µg/L and [Zn] < 500 µg/L). The molasses + methanol mix was slightly more efficient than either. These findings indicated that native SRB might be used successfully to treat metal-contaminated mine water.

摘要

硫酸盐生物还原法 (SRB) 作为有潜力的矿山废水处理技术,正被越来越广泛地用作传统处理方法的可替代方法。该方法在终年寒冷和细菌生活受限区域的应用仍面临挑战。利用4.5℃条件下90多天的静态试验研究了低温对SRB活性和酸性废水镉和锌去除率的影响。SRB系统加入了糖浆(molasses,Mo)、甲醇(methanol)和糖浆与甲醇不同浓度混合物的碳源。SRB反应器大小为1升,监测频率每两周一次,监测项目包括pH值、氧化-还原电位(ORP)及锌、隔、硫酸盐和总有机碳的残余浓度。碳源的使用明显提高了细菌活性和硫化物沉淀态隔、锌去除率。反应90天后,锌去除率94.8%,镉去除率99.4%,镉和锌浓度分别低于50µg/L和500µg/L的废水排放标准。研究表明,本地硫酸盐还原菌能成功处理含重金属矿井废水。

Zusammenfassung

Die passive Behandlung von Bergbauabwasser durch Sulfat-reduzierende Bakterien (SRB) ist eine vielversprechende grüne Technologie, welche zunehmend als Alternative zu konventionellen Behandlungsmethoden eingesetzt wird. Es besteht jedoch noch weiterer Entwicklungsbedarf bei Anwendungen unter kühleren Klimabedingungen, wo die Wassertemperaturen über das gesamte Jahr niedrig sind und somit das Bakterienwachstum begrenzen. Der Einfluss niedriger Temperaturen auf die auf die Aktivität von SRB in saurem Grubenabwasser und die Auswirkung auf den Cd- und Zn-Entzug werden durch 90-tägige statische Tests bei 4.5 °C untersucht. Dabei wird der Einfluss unterschiedlicher Kohlenstoffquellen (Melasse (Mo), Methanol (MeOH), Mo/MeOH-Mischung) zusätzlich untersucht. Die ein Liter großen Reaktionsgefäße wurden zweimal in der Woche auf den pH-Wert, das Oxidations/Reduktionspotenzial (ORP) sowie auf Zn-, Cd-, Sulfat- und TOC- (Gesamter Organischer Kohlenstoff) Gehalte untersucht. Die Verwendung von zusätzlichen Kohlenstoffquellen erhöhte die Bakterienaktivität deutlich und wirkt sich somit auch auf die Metallfällung von Cd und Zn aus, wobei die Metalle als Sulfid gefällt werden. Bis zu 94.8% des Zn und 99.4% des Cd sind nach 90 Tagen gefällt worden, was zu Metallkonzentrationen unterhalb der Abflussgrenzwerte ([Cd] < 50 µg/L und [Zn] < 500 µg/L) führte. Die Nutzung der Mo+MeOH-Mischung war effizienter als die Verwendung von Melasse oder MeOH alleine. Diese Ergebnisse zeigen, dass die ursprünglich vorkommenden SRB erfolgreich bei der Behandlung schwermetallhaltigen Grubenabwassers eingesetzt werden könnten.

Resumen

El tratamiento pasivo, utilizando bacterias sulfato-reductoras (SRB), es una tecnología verde y promisoria que está siendo usada en forma creciente como alternativa para el tratamiento de drenajes de minas en lugar de métodos convencionales. Sin embargo, muchos desafíos aún existen para su implementación en climas fríos donde la temperatura del agua permanece fría todo el año por lo que el crecimiento bacteriano está limitado. A través de ensayos estáticos realizados a 4,5 C por 90 días, se estudió el impacto de las bajas temperaturas sobre la actividad de SRB y la consecuente remoción de Cd y Zn desde drenaje ácido de minas (AMD). Se ensayaron diferentes fuentes de carbono para el crecimiento de SRB: molasas (Mo), metanol (MeOH) y una mezcla de Mo/MeOH a diferentes concentraciones. Los reactores de 1 L de capacidad fueron monitoreados cada dos semanas y se midieron el pH, el potencial de óxido-reducción (ORP) y las concentraciones residuales de Zn, Cd, sulfatos y carbono total orgánico (TOC). El uso de fuentes de carbono mejora claramente la actividad bacteriana y consecuentemente la remoción de metales (Cd y Zn) por precipitación de sulfuros. Se removió arriba de 94,8% de cinc y arriba de 99,4% of cadmio después de 90 días, resultando en una reducción de las concentraciones de metales debajo de los límites de descarga ([Cd] < 50 µg/L y [Zn] < 500 µg/L). La mezcla Mo+MeOH fue ligeramente más eficiente que Mo o MeOH por separado. Estos resultados indicaron que las SRB podrían ser usadas exitosamente en el tratamiento de las aguas de descarga de minas contaminadas con metales pesados.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14(12):1139–1145

    Article  Google Scholar 

  • Alexco (2012) Galkeno 900 sulphate—reducing bioreactor 2008–2011 operations: Final report. Yukon Water Board, Technical report QZ12–057, Yukon, Canada

  • Aubé B, Zinck J, Eng M (2003) Lime treatment of acid mine drainage in Canada. In: Brazil–Canada Seminar on Mine Rehabilitation. Brazil–Canada Seminar on Mine Rehabilitation, Florianópolis, Brazil, pp 1–12

  • Aubertin M, Bussière B (2001) Meeting environmental challenges for mine waste management. Geotech News 19(3):21–26

    Google Scholar 

  • Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulphates from acid sulphate waters. Rev Mineral Geochem Mineral Soc Am 40:351–403

    Article  Google Scholar 

  • Cabrera G, Pérez R, Gomez JM, Abalos A, Cantero D (2006) Toxic effects of dissolved metals on Desulfovibrio vulgaris and Desulfovibrio sp. strains. J Hazard Mater 135(1):40–46

    Article  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nat Rev Microbiol 4:331–343

    Article  Google Scholar 

  • Coudert L, Blais JF, Cooper P, Mercier G, Janin L, Gastonguay L (2014) Demonstration of the efficiency and robustness of an acid leaching process to remove metals from various CCA-treated wood samples. J Env Manag 132:197–206

    Article  Google Scholar 

  • Dijkhuizen L, Hansen TA, Harder W (1985) Methanol, a potential feedstock for biotechnological processes. Trends Biotechnol 3:262–267

    Article  Google Scholar 

  • Drury WJ (2006) Modeling of sulfate reduction in anaerobic solid substrate bioreactors for mine drainage treatment. Mine Water Environ 19(1):19–29

    Article  Google Scholar 

  • Dürre P, Bahl H, Gottschalk G (1988) Membrane processes and product formation in anaerobes. Handbook for Anaerobic Fermentations. Dekker, New York City, pp 187–206

    Google Scholar 

  • Egiebor NO, Oni B (2007) Acid rock drainage formation and treatment: a review. Asia-Pac J Chem Eng 2:47–62

    Article  Google Scholar 

  • Espana JS, Pamo EL, Santofimia E, Aduvire O, Reyes J, Barettino D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20(7):1320–1356

    Article  Google Scholar 

  • Fajtl J, Tichý R, Ledvina R (2002) Gypsum precipitation—a medium to control sulphate pollution of freshwater sediment leachates. Water Air Soil Pollut 135(1–4):141–156

    Article  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  Google Scholar 

  • Fortin D, Roy M, Rioux JP, Thibault PJ (2000) Occurrence of sulfate-reducing bacteria under a wide range of physico-chemical conditions in Au and Cu–Zn mine tailings. FEMS Microbiol Ecol 33(3):197–208

    Google Scholar 

  • Gandy CJ, Jarvis AP (2012) The influence of engineering scale and environmental conditions on the performance of compost bioreactors for the remediation of zinc in mine water discharges. Mine Water Environ 31(2):82–91

    Article  Google Scholar 

  • Gault GBF, Gammon P, Fortin D (2015) A geochemical characterization of cold-water natural acid rock drainage at the Zn–Pb XY deposit, Yukon, Canada. Appl Geochem 62:35–47

    Article  Google Scholar 

  • Germonpre R, Liessens J, Verstraete W (1991) Fluidised bed denitrification of drinking water with methanol-pilot plant experience. International Symp: Environmental Biotechnology, Oostende, Belgium, 22–25 Apr 1991

  • Gibert O, De Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: a review from laboratory to full-scale experiments. Rev Env Sci Biotechnol 1(4):327–333

    Article  Google Scholar 

  • Gibert O, De Pablo J, Cortina JL, Ayora C (2004) Chemical characterisation of natural organic substrates for biological mitigation of acid mine drainage. Water Res 38(19):4186–4196

    Article  Google Scholar 

  • Glombitza F (2001) Treatment of acid lignite mine flooding water by means of microbial sulfate reduction. Waste Manag 21(2):197–203

    Article  Google Scholar 

  • Gloyna EF (1972) Waste stabilization ponds. World Health Organization, Geneva

    Google Scholar 

  • Gould W, Cameron R, Morin L, Bedard P, Lortie L (2012) Effect of lactate/acetate and glucose amendment on low temperature performance of anaerobic bioreactor treating simulated mine drainage. Proc, 9th International Conference on Acid Rock Drainage (ICARD), Ottawa, pp 178–187

  • Groudev SN, Genchev FN, Gaidarjiev SS (1978) Observations on the microflora in an industrial copper dump leaching operation. In: Metallurgical Applications of Bacterial Leaching and Related Microbiological Phenomena, vol 253. Academic Press, New York, pp 253–274

  • Gusek J, Wildeman T (2002) A new millennium of passive treatment of acid rock drainage: advances in design and construction since 1988. Proc, National Meeting of the American Soc for Mining and Reclamation, Lexington, KY, USA

  • Hammer DA (1989) Constructed wetlands for wastewater treatment: municipal, industrial and agricultural. CRC Press, Boca Raton

    Google Scholar 

  • Hao OJ, Chen JM, Huang L, Buglass RL (1996) Sulfate-reducing bacteria. Crit Rev. Environ Sci Technol 26:155–187

    Article  Google Scholar 

  • Harerimana C, Harbi B, Vasel JL, Delvigne F, Thonart P, Crine M (2010) Development of a stoichiometric model of the sulphate-reduction by the sulphate-reducing bacteria in anaerobic lagoons. Biotechnol Agron Soc Environ 14(2):577–582 (in French)

    Google Scholar 

  • Hashim MA, Mukhopadhyay S, Sahu JN, Sengupta B (2011) Remediation technologies for heavy metal contaminated groundwater. J Environ Manag 92(10):2355–2388

    Article  Google Scholar 

  • Hulshof AHM, Blowes DW, Ptacek CJ, Gould WD (2003) Microbial and nutrient investigations into the use of in situ layers for treatment of tailings effluent. Environ Sci Technol 37:5027–5033

    Article  Google Scholar 

  • Janin A, Harrington J (2013) Passive treatment of mine drainage waters: the use of biochar and wood products to enhance metal removal efficiency. In: Proceedings 2013 Northern Latitudes Mining Reclamation Workshop and 38th Annual Meeting of the Canadian Land Reclamation Association Overcoming Northern Challenges, pp 90–99

  • Janin A, Harrington J (2015) Performances of lab-scale anaerobic bioreactors at low temperature using Yukon native microorganisms. In: Proceedings of the mine water solutions in extreme environments, Vancouver, pp 519-532

  • Jin S, Fallgren PH, Morris JM (2008) Biological source treatment of acid mine drainage using microbial and substrate amendments: microcosm studies. Mine Water Environ 27:20–30

    Article  Google Scholar 

  • Johnson DB, Hallberg KB (2005) Acid mine drainage remediation options: a review. Sci Total Environ 338(1):3–14

    Article  Google Scholar 

  • Ledin M, Pedersen K (1996) The environmental impact of mine wastes—roles of microorganisms and their significance in treatment of mine wastes. Earth Sci Rev 41(1):67–108

    Article  Google Scholar 

  • Lindsay MB, Moncur MC, Bain JG, Jambor JL, Ptacek CJ, Blowes DW (2015) Geochemical and mineralogical aspects of sulfide mine tailings. Appl Geochem 57:157–177

    Article  Google Scholar 

  • Londry K (2013) Microbiology of metals attenuation: United Keno Hill Mines. Technical report, edmonton waste management centre of excellence, Canada

  • Luptakova A (2007) Importance of sulphate-reducing bacteria in environment. Nova Biotechnol 7(1):17–22

    Google Scholar 

  • Luptakova A, Macingova E (2012) Alternative substrates of bacterial sulphate reduction suitable for the biological-chemical treatment of acid mine drainage. Acta Montan Slovaca 17(1):74–80

    Google Scholar 

  • Martin AJ, Jones R, Buckwalter-Davis M (2009) Passive and semi-passive treatment alternatives for the bioremediation of selenium from mine waters. In: Keevil NB (ed), Proceedings, British Columbia Mine Reclamation Symposium University of British Columbia, Vancouver, pp 12–31

  • Mayes WM, Davis J, Silva V, Jarvis AP (2011) Treatment of zinc-rich acid mine water in low residence time bioreactors incorporating waste shells and methanol dosing. J Hazard Mater 193:279–287

    Article  Google Scholar 

  • Moncur MC, Ptacek CJ, Lindsay MB, Blowes DW, Jambor JL (2015) Long-term mineralogical and geochemical evolution of sulfide mine tailings under a shallow water cover. Appl Geochem 57:178–193

    Article  Google Scholar 

  • Morin KA, Hutt NM (2001) Prediction of minesite-drainage chemistry through closure using operational monitoring data. J Geochem Explor 73(2):123–130

    Article  Google Scholar 

  • Neculita CM (2008) Passive biological treatment of acid mine drainage: carbon sources, metal removal mechanisms and ecotoxicity. PhD thesis, Polytechnic School of Montreal, QC, Canada (in French)

  • Neculita CM, Zagury GJ, Bussière B (2007) Passive treatment of acid mine drainage in bioreactors using sulfate-reducing bacteria. J Environ Qual 36(1):1–16

    Article  Google Scholar 

  • Neculita CM, Zagury GJ, Bussière B (2008) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: I. Effect of hydraulic retention time. Appl Geochem 23(12):3442–3451

    Article  Google Scholar 

  • Ness I, Janin A, Stewart K (2014) Passive treatment of mine impacted water in cold climates: a review. Yukon Research Centre, Yukon College. http://www.yukoncollege.yk.ca/research. Accessed 01 March 2016

  • Ninteman DJ (1978) Spontaneous oxidation and combustion of sulphide ores in underground mines, a literature survey. US Bureau of Mines Internal Circular, Washington DC

  • Nordin (2010) Evaluation of the effectiveness of biological treatment of mine waters. MPERG Report 2010–4, Laberge Environmental Services, Mining and Petroleum Environment Research Group, Yukon, Canada

  • Nordstrom DK, Blowes DW, Ptacek CJ (2015) Hydrogeochemistry and microbiology of mine drainage: an update. Appl Geochem 57:3–16

    Article  Google Scholar 

  • Pandey BD, Natarajan KA (eds) (2015) Microbiology for minerals, metals, materials and the environment. CRC Press, Boca Raton

    Google Scholar 

  • Potvin R (2009) Evaluation at different scales of the performances of passive treatment systems for effluents heavily contaminated by acid mine drainage. PhD thesis, University of Quebec in Abitibi-Témiscamingue, Abitibi-Témiscamingue, QC, Canada [in French]

  • Price WA, Morin K, Hutt N (1997b) Guidelines for the prediction of acid rock drainage and metal leaching for mines in British Columbia: Part II—recommended procedures for static and kinetic testing, Proc, 4th ICARD, Vancouver, BC, p 15–30

  • Rees GN, Grassia GS, Sheehy AJ, Dwivedi PP, Patel BK (1995) Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int J Syst Bacteriol 45(1):85–89

    Article  Google Scholar 

  • Robador A, Brüchert V, Jørgensen BB (2009) The impact of temperature change on the activity and community composition of sulfate-reducing bacteria in arctic versus temperate marine sediments. Environ Microbiol 11(7):1692–1703

    Article  Google Scholar 

  • Rozanova EP, Tourova TP, Kolganova TV, Lysenko AM, Mityushina LL, Yusupov SK, Belyaev SS (2001) Desulfacinum subterraneumsp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology 70(4):466–471

    Article  Google Scholar 

  • Sievert SM, Kuever J (2000) Desulfacinum hydrothermale sp. nov., a thermophilic, sulfate-reducing bacterium from geothermally heated sediments near Milos Island (Greece). Int J Syst Evolut Microbiol 50(3):1239–1246

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR (1978) Field and laboratory methods applicable to overburdens and minesoils. US EPA 600/2-78-054, Cincinnati

  • Sobolewski A (2010) Benefits of using liquid carbon sources for passive treatment systems. In: Proceedings International Mine Water Association Sym—Mine Water and Innovative Thinking, Sydney, NS, Canada, pp. 279–282

  • Tolonen ET, Rämö J, Lassi U (2015) The effect of magnesium on partial sulphate removal from mine water as gypsum. J Environ Manag 159:143–146

    Article  Google Scholar 

  • Tsukamoto TK (1999) Alcohol Enhanced, Passive Bioreactors for Treatment of Acid Mine Drainage. University of Nevada, Reno, NV, USA

  • Tsukamoto TK, Miller GC (1999) Methanol as a carbon source for microbiological treatment of acid mine drainage. Water Res 33(6):1365–1370

    Article  Google Scholar 

  • Wang H, Chen F, Mu S, Zhang D, Pan X, Lee DJ, Chang JS (2013) Removal of antimony (Sb (V)) from Sb mine drainage: biological sulfate reduction and sulfide oxidation–precipitation. Bioresource Technol 146:799–802

    Article  Google Scholar 

  • Waybrant KR, Blowes DW, Ptacek CJ (1998) Selection of reactive mixtures for use in permeable reactive walls for treatment of mine drainage. Environ Sci Technol 32(13):1972–1979

    Article  Google Scholar 

  • Waybrant KR, Ptacek CJ, Blowes DW (2002) Treatment of mine drainage using permeable reactive barriers: column experiments. Environ Sci Technol 36(6):1349–1356

    Article  Google Scholar 

  • Weijma J (2000) Methanol as electron donor for thermophilic biological sulfate and sulfite reduction. PhD thesis, Wageningen University, the Netherlands

  • Younger PL, Banwart SA, Hedin RS (2002) Mine water: hydrology, pollution, remediation. Springer, The Netherlands

    Book  Google Scholar 

  • Zagury GJ, Neculita C, Bussiere B (2007) Passive treatment of acid mine drainage in bioreactors: short review, applications, and research needs. In: Proceedings 60th Canadian geotechnical conference and 8th joint CGS/IAH-CNC specialty groundwater conference, Ottawa, ON, Canada, pp 1439–1446

  • Ziemkiewicz PF, Skousen JG, Simmons J (2003) Long-term performance of passive acid mine drainage treatment systems. Mine Water Environ 22:118–129

    Article  Google Scholar 

Download references

Acknowledgements

Sincere thanks are extended to the MITACS and Natural Sciences and Engineering Research Council of Canada for their financial contributions and Alexco for the technical support they provided.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Francois Blais.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nielsen, G., Janin, A., Coudert, L. et al. Performance of Sulfate-reducing Passive Bioreactors for the Removal of Cd and Zn from Mine Drainage in a Cold Climate. Mine Water Environ 37, 42–55 (2018). https://doi.org/10.1007/s10230-017-0465-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0465-1

Keywords

Navigation