An Improved Vulnerability Assessment Model for Floor Water Bursting from a Confined Aquifer Based on the Water Inrush Coefficient Method

  • Wenping Li
  • Yu Liu
  • Wei Qiao
  • Chengxi Zhao
  • Dongdong Yang
  • Qichen Guo
Technical Article
  • 165 Downloads

Abstract

Pressurized confined water below coal seams are serious threats to mining. The conventional water inrush coefficient method fails to accurately assess the risk of floor water inrush under some specific conditions, such as high water pressure and low water yield in the source aquifers. Large amounts of water inrush data including water inrush flow rate, water inrush coefficient (T s ), floor aquiclude thickness (M), and water abundance, were collected and statistically analyzed. The results indicated that inrushes mostly occurred when M was less than 30 m and that the critical T s increased linearly with M. The occurrence of a water inrush and water inrush yield amount (Q in L/s) were related to both the values of T s and the unit water inflow (q in L/(s m)). In addition, 97.7% of the large- and medium-sized inrush events occurred when q > 2 L/(s m) and only a small proportion (3.2%) of the small-sized inrushes happened when q < 0.1 L (s m). T s M and q were comprehensively analyzed and used to evaluate vulnerability to floor water inrush. By analyzing the distribution of water inrush points and the scale of water inrush events, the vulnerability was divided into four levels (safe, moderately safe, potentially dangerous, and highly risky) based on T s M and T s q models. Successful application of these models in the Huaibei mining area proved that they are feasible in practice. The T s M and T s q charts can be used independently or jointly. These new methods should improve the accuracy of predictions and evaluations during deep exploitation where the aquifers are often characterized with high pressure but low water abundance. The results could also help reduce the amount spent on mine water prevention and control.

Keywords

Water hazards Coal mining Unit water inflow Aquiclude thickness 

Verbessertes Modell zur Vulnerabilitätsbewertung gegenüber Liegendwassereinbruch aus gespanntem Aquifer auf Basis der Wassereinbruch-Koeffizienten-Methode

Zusammenfassung

Gespannte, unter Druck stehende Grundwässer im Liegenden von Kohleflözen stellen für dortigen Bergbau ein erstzunehmendes Risiko dar. Die konventionelle Wassereinbruch-Koeffizienten-Methode versagt unter bestimmten Bedingungen bezüglich einer genauen Vorhersage von Liegendwassereinbrüchen, so bei hohen Wasserdrücken und geringer Ergiebigkeit der betroffenen Grundwasserleiter. Für die vorliegende Arbeit wurden große Datenmengen zu Wassereinbrüchen zusammengetragen und statistisch untersucht, darunter Angaben zur Zuflussmenge, zum Wassereinbruchskoeffizienten (Ts), zur Sohlstauermächtigkeit (M) und zur Wassermenge. Die Ergebnisse zeigen, dass Einbruchsereignisse überwiegend bei M < 30 m auftraten und dass der kritische Ts linear mit M anstieg. Das Auftreten von Wassereinbrüchen sowie die Zuflussmenge (Q in L/s) wurden in Beziehung gesetzt zu TS sowie zur spezifischen Zuflussmenge (q in L/(s∙m)). 97,7% der großen und mittleren Wassereinbrüche traten mit q > 2 L/(s∙m) auf, während nur ein geringer Anteil (3,2%) der kleineren Einbrüche q < 0.1 L/(s∙m) aufwies. Ts, M und q wurden umfassend analysiert und die Ergebnisse genutzt, um die Anfälligkeit gegenüber Liegendwassereinbrüchen zu bewerten. Durch Auswertung der Verteilung von Wasserzutrittspunkten sowie der Schwere der Einbruchsereignisse wurde die Vulnerabilität auf Basis von Ts-M- und Ts-q-Modellen in vier Klassen unterteilt (sicher, mäßig sicher, potentiell gefährlich, hoch gefährlich). Die erfolgreiche Anwendung dieser Modelle in der Bergbauregion von Huaibei ist Beleg für deren Praktikabilität. Die Ts-M- und Ts-q-Diagramme können unabhängig voneinander oder auch kombiniert genutzt werden. Es wird erwartet, dass die neuen Methoden die Genauigkeit von Vorhersagen und Bewertungen in Bezug auf Bergbau in großen Teufen, bei dem häufig Aquifere mit hochgespannten Wässern und geringer Ergiebigkeit auftreten, verbessern. Die Ergebnisse sollten auch dazu beitragen, die Aufwendungen für Prävention und Beherrschung von Wassereinbrüchen zu verringern.

Un modelo mejorado de relevamiento de la vulnerabilidad para riesgo por agua a través del piso desde un acuífero confinando basado en el método del coeficiente de irrupción de agua

Resumen

El agua presurizada y confinada debajo de las vetas de carbón constituye una seria amenaza para la minería. El método convencional del coeficiente de irrupción de agua falla para predecir con precisión el riesgo de irrupción de agua a través del piso bajo algunas condiciones específicas como son la alta presión del agua y el bajo contenidoo de agua en los acuíferos. Se colectaron y analizaron estadísticamente grandes cantidades de datos incluyendo los flujos de agua, los coeficientes de irrupción de agua (Ts), el espesor del piso (M) y la abundancia de agua. Los resultados indicaron que las irrupciones ocurrieron principalmente cuando M fue menor a 30 m y que el TS crítico se incrementó linealmente con M. La ocurrencia de la irrupción de agua y la cantidad de agua involucrada (Q en L/s) fueron relacionados a los valores de Ts y al flujo de agua (q en L/(s∙m)). Además, 97,7% de los eventos de media y gran escala ocurrieron cuando q > 2 L/(s∙m) y sólo una pequeña porción (3,2%) de los eventos de pequeño tamaño ocurrieron cuando q < 0,1 L/(s∙m). Ts, M y q se analizaron comprensivamente y se usaron para evaluar la vulnerabilidad a la irrupción de agua desde el piso. Analizando la distribución de los puntos de irrupción de agua y la magnitud de los eventos de irrupción de agua, la vulnerabilidad fue dividida en cuatro niveles (seguros, moderamente seguros, potencialmente peligrosos y altamente peligrosos) basado en los modelos Ts-M y Ts-q. La aplicación exitosa de estos modelos en el área minera Huaibei probó que los mismos pueden ser aplicados prácticamente. Las tablas Ts-M y Ts-q pueden ser usadas juntas o independientemente. Estos nuevos métodos deberían mejorar la precisión de las predicciones y las evaluaciones durante la explotación en profundidad donde los acuíferos están frecuentemente caracterizados por alta presión pero baja abundancia de agua. Los resultados podrían también ayudar a reducir el dinero gastado en la prevención y el control de las irrupciones de agua.

基于突水系数的底板承压水突水改进脆弱性评价模型

摘要

煤层下伏承压含水层威胁煤矿安全开采。传统突水系数法不能精确评价突水含水层高水压却低富水性等特定条件下的突水风险。收集和统计了突水量、突水系数(Ts)、底板隔水层厚度(M)、富水系数等相关突水材料。结果表明,多数突水发生于底板隔水层厚度小于30m,临界突水系数(Ts)随底板隔水层厚度(M)增加而线性增大。突水及突水量(Q,单位L/s)同时与突水系数(Ts)和单位涌水量(q,单位L/( s∙m)有关。97.7%的大型和中型底板突水事故发生于单位涌水量大于2 L/( s∙m)的含水层,仅少量突水(3.2%)发生于单位涌水量小于 0.1 L/(s∙m)的含水层。突水系数、底板隔水层厚度和单位涌水量以用综合评价底板突水脆弱性。通过分析突水点分布和突水规模,基于Ts-M和 Ts-q模型,底板突水脆弱性被分为四个等级(安全、中等安全、潜在危险和高度危险)。该模型在淮北矿区的成功应用证明了方法的可行性。Ts-M和Ts-q图可单独或联合应用。该方法可提高深部高水压、低富水性含水层的突水危险预测精度,有助于减少防治水成本。

Notes

Acknowledgements

The authors thank everyone who provided assistance in the present study, which was jointly supported by the State Key Program of National Natural Science of China (Grant 41430643) and the Natural Science Foundation of China (Grant 41302248). Thanks also to the editors and reviewers for their suggestions and help.

Supplementary material

10230_2017_463_MOESM1_ESM.doc (44 kb)
Supplementary material 1 (DOC 44 KB)

References

  1. Chen L, Feng X, Xie W, Zeng W, Zheng Z (2017) Using a fluid–solid coupled numerical simulation to determine a suitable size for barrier pillars when mining shallow coal seams beneath an unconsolidated, confined aquifer. Mine Water Environ 36(1):67–77CrossRefGoogle Scholar
  2. Coalfield Geological Central Bureau of China (2000) Coalfield hydrogeology of China. Coal Industry Publ House of China, Beijing (in Chinese)Google Scholar
  3. Duan HF, Jiang ZQ, Zhu SY, Zhao LJ, Liu JG (2012) A expansive limits anti-permeability strength methodology of the coal mine floor water inrush evaluating. Procedia Environ Sci A 12:372–378CrossRefGoogle Scholar
  4. Gao MY (2013) Evaluation of water inrush from floor using the Slesarev formula. Chin Mine Eng 42(3):47–48 (in Chinese)Google Scholar
  5. Guan ET (2012) Origin of water bursting coefficient and process of modification. Coal Geol Explor 24(2):30–32 (in Chinese)Google Scholar
  6. Hu X, Wang L, Lu Y, Mei Y (2014) Analysis of insidious fault activation and water inrush from the mining floor. Int J Min Sci Technol 24(4):477–483CrossRefGoogle Scholar
  7. Kuznetsov SV, Trofimov VA (2002) Hydrodynamic effect of coal seam compression. J Min Sci+ 38(3):205–212CrossRefGoogle Scholar
  8. Li BY (1999) “Down three zones” in the prediction of the water inrush from coalbed floor aquifer theory, development and application. J Shandong Inst Min Technol Nat Sci 18(4):11–18Google Scholar
  9. Li LP, Zhou ZQ, Li SC, Xue YG, Xu ZH, Shi SS (2015) An attribute synthetic evaluation system for risk assessment of floor water inrush in coal mines. Mine Water Environ 34(3):288–294CrossRefGoogle Scholar
  10. Liu TQ (1981) The law of surface movement of coalmine and damage of overlying rocks and its application. Coal Industry Publ House of China, Beijing (in Chinese)Google Scholar
  11. Liu QS (2009) A discussion on water inrush coefficient. Coal Geol Explor 37(4):34–37 (in Chinese)Google Scholar
  12. Meng Z, Li G, Xie X (2012) A geological assessment method of floor water inrush risk and its application. Eng Geol 143:51–60CrossRefGoogle Scholar
  13. Pang Y, Wang G, Ding Z (2014) Mechanical model of water inrush from coal seam floor based on triaxial seepage experiments. Int J Coal Sci Technol 1(4):428–433CrossRefGoogle Scholar
  14. Qian MG, Miao XX, Xu JL (1996) Theoretical study of key stratum in ground control. J China Coal Soc 21(3):225–230 (Chinese)Google Scholar
  15. Qiao W, Li WP, Zhao CX (2009) Water inrush coefficient-unit inflow method for water inrush evaluation of coal mine floor. Chin J Rock Mech Eng 28(12):2466–2474 (in Chinese)Google Scholar
  16. Qiao W, Hu G, Li WP (2013) Experimental study on the convertion from seepage to flow of water inrush aroused by fault activation in fully mechanized top-coal caving. J Min Safety Eng 30(1):30–37 (Chinese)Google Scholar
  17. Qiao W, Li W, Zhang X (2014) Characteristic of water chemistry and hydrodynamics of deep karst and its influence on deep coal mining. Arab J Geosci 7(4):1261–1275CrossRefGoogle Scholar
  18. Qiu M, Shi L, Teng C, Zhou Y (2017) Assessment of water inrush risk using the fuzzy delphi analytic hierarchy process and grey relational analysis in the Liangzhuang coal mine, China. Mine Water Environ 36(1):39–50CrossRefGoogle Scholar
  19. SACMSC (State Administration of Coal Mine Safety of China) (2009) Interpretation of the regulations of mine water disaster prevention. China Univ of Mining and Technology Press, Xuzhou, pp 227–236 (in Chinese)Google Scholar
  20. SAWSC, SACMSC (2009) Coal Mine Water Prevention and Control Regulations. China Coal Industry Publ House, Beijing, pp 84–85 (in Chinese)Google Scholar
  21. SAWSC (State Administration of Work Safety of China) (2008) Standard for exploration and evaluation of hydrogeology, engineering geology and environment geology in coal beds. China Coal Industry Publ House, Beijing (in Chinese)Google Scholar
  22. Shi L, Singh RN (2001) Study of mine water inrush from floor strata through faults. Mine Water Environ 20(3):140–147CrossRefGoogle Scholar
  23. Wang XL, Liu ZX (2007) Mine hydrological geology. Coal Industry Press, Beijing, pp 180–182 (Chinese)Google Scholar
  24. Wang Y, Yang W, Li M, Liu X (2012) Risk assessment of floor water inrush in coal mines based on secondary fuzzy comprehensive evaluation. Int J Rock Mech Min 52:50–55CrossRefGoogle Scholar
  25. Wang X, Wang T, Wang Q, Liu X, Li R, Liu BJ (2017) Evaluation of floor water inrush based on fractal theory and an improved analytic hierarchy process. Mine Water Environ 36(1):87–95CrossRefGoogle Scholar
  26. Wu Q, Zhang ZL, Ma JF (2007) A new practical methodology of the coal floor water bursting evaluating I: the master controlling index system construction. J China Coal Soc. doi: 10.13225/j.cnki.jccs.2007.01.009 (in Chinese)Google Scholar
  27. Wu Q, Xu H, Pang W (2008) GIS and ANN coupling model: an innovative approach to evaluate vulnerability of karst water inrush in coalmines of north china. Environ Geol 54(5):937–943CrossRefGoogle Scholar
  28. Wu Q, Wang JH, Liu DH, Cui FP, Liu SQ (2009) A new practical methodology of the coal floor water bursting evaluating IV: the application of AHP vulnerable index method based on GIS. J China Coal Soc. doi: 10.13225/j.cnki.jccs.2009.02.025 (in Chinese)Google Scholar
  29. Wu Q, Liu Y, Liu D, Zhou W (2011) Prediction of floor water inrush: the application of GIS-based AHP vulnerable index method to Donghuantuo coal mine, China. Rock Mech Rock Eng 44:591–600CrossRefGoogle Scholar
  30. Wu Q, Liu Y, Zhou WF, Li B, Zhao B, Liu S, Zeng Y (2015) Evaluation of water inrush vulnerability from aquifers overlying coal seams in the Menkeqing coal mine, China. Mine Water Environ 34(3):258–269CrossRefGoogle Scholar
  31. Wu Q, Guo X, Shen J, Xu S, Liu S, Zeng Y (2017) Risk assessment of water inrush from aquifers underlying the Gushuyuan coal mine, China. Mine Water Environ 36(1):96–103CrossRefGoogle Scholar
  32. Yang TH, Tu XL, Yu B, Zhang YB, Li LC, Tang CA, Tan GH (2005) A micromechanical model for simulating the coupling of fracture and flow of rock. Acta Mech Solida Sin 26(3):333–337Google Scholar
  33. Yao B, Bai H, Zhang B (2012) Numerical simulation on the risk of roof water inrush in WuYang coal mine. Int J Min Sci Technol 22(2):273–277CrossRefGoogle Scholar
  34. Ye YX, Liu GY (2005) Research on coupling characteristics of fluid flow and stress within rock. Chin J Rock Mech Eng 24(14):2518–2523 (in Chinese)Google Scholar
  35. Yin H, Wei J, Lefticariu L, Guo J, Xie D, Li Z (2016) Numerical simulation of water flow from the coal seam floor in a deep longwall mine in China. Mine Water Environ 35(2):243–252CrossRefGoogle Scholar
  36. Yu B, Chen Z, Yu L (2016) Water-resisting ability of cemented broken rocks. Int J Min Sci Technol 26(3):449–454 (in Chinese)CrossRefGoogle Scholar
  37. Zhang R, Jiang Z, Zhou H, Yang C, Xiao S (2014) Groundwater outbursts from faults above a confined aquifer in the coal mining. Nat Hazards 71(3):1861–1872CrossRefGoogle Scholar
  38. Zhou WF (1997) Karst water control and management in the Hanxing mining area of north China. Environ Geol 30(3):280–284Google Scholar
  39. Zhou W, Li G (2001) Geological barrier–a natural rock stratum for preventing confined karst water from flowing into mines in north China. Environ Geol 43(8):1003–1009CrossRefGoogle Scholar
  40. Zhu WC, Wei CH (2011) Numerical simulation on mining-induced water inrushes related to geologic structures using a damage-based hydromechanical model. Environ. Earth Sci 62(1):43–54CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Wenping Li
    • 1
  • Yu Liu
    • 1
  • Wei Qiao
    • 1
  • Chengxi Zhao
    • 3
  • Dongdong Yang
    • 2
  • Qichen Guo
    • 1
  1. 1.School of Resources and GeosciencesChina University of Mining and TechnologyXuzhouChina
  2. 2.China Shipbuilding Industry Institute of Engineering Investigation and Design Co, LtdShanghaiChina
  3. 3.School of Applied Science and TechnologyChina University of Mining and TechnologyXuzhouChina

Personalised recommendations