Skip to main content
Log in

Ferric Sulphate Coagulant Obtained by Leaching from Coal Tailings

煤尾矿淋滤获取硫酸铁凝结剂

Gewinnung eines Eisen(III)-Sulfat-haltigen Koagulationsmittels aus Kohlerückständen

Coagulante sulfato férrico obtenido por lixiviación de relaves de carbón

  • Technical Communication
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

A ferric sulphate solution was produced from pyritic coal tailings for potential use as a coagulant for water and wastewater treatment. Laboratory-scale leaching experiments were carried out with four tailings with different concentrations of pyrite. The tailings were characterized for: total sulphur, pyritic sulphur, sulphate sulphur, organic sulphur, and elemental analysis of carbon, hydrogen, and nitrogen. X-ray diffraction analyses were also conducted to assess the mineral composition of the samples. The leaching was carried out using a laboratory column constructed as a packed bed reactor with a closed-circuit sprinkling system. After 4 weeks of leaching, the liquor was filtered and evaporated to reach an iron concentration of about 12% w/w, which is typical of most commercial FS coagulants in Brazil.

抽象

含黄铁矿的煤矿尾矿获取的硫酸铁溶液可用作废水处理凝结剂。用含有不同黄铁矿的四种煤矿尾矿进行室内试验。用以下指标描述尾矿特征:总硫、黄铁矿形态硫、硫酸盐形态硫、有机硫和碳、氢、氮元素含量。X荧光衍射(XRD)用以评价岩样的矿物成分。室内淋滤柱为闭流循环喷水的充填床式反应器。四星期淋滤之后,滤液经过滤和蒸发浓缩至铁浓度12 % w/w,获取巴西典型的商业硫酸铁(FS)凝结剂

Zusammenfassung

Aus Pyrit-haltigen Kohlerückständen wurde eine Eisen(III)-Sulfat-Lösung für den möglichen Einsatz als Koagulationsmittel zur Wasser- und Abwasserbehandlung hergestellt. Im Labormaßstab wurden Extraktionsversuche mit vier Rückstandsproben durchgeführt, die unterschiedliche Pyritkonzentrationen aufwiesen. Die Rückstandsproben wurden untersucht auf ihren Gehalt an Gesamtschwefel, Disulfid-Schwefel, Sulfat-Schwefel, organischem Schwefel sowie mit Elementaranalyse bezüglich der Gehalte an Kohlenstoff, Wasserstoff und Stickstoff. Außerdem wurde der Mineralienbestand der Proben mit Röntgendiffraktometrie festgestellt. Die Extraktionsversuche wurden mit einer Laborsäule durchgeführt, die als Festbettreaktor mit Berieselungsanlage im geschlossenen Kreislauf konstruiert war. Nach vier Wochen Extraktionsdauer wurde der Extrakt filtriert und eingedampft, um eine Eisenkonzentration mit einem Masseanteil von ungefähr 12 % zu erreichen, welche typisch ist für die meisten kommerziell in Brasilien erhältlichen Koagulationsmittel aus Eisen(III)-Sulfat.

Resumen

Una solución de sulfato férrico fue producida a partir de relaves de carbón pirítico para su potencial uso como coagulante para agua y para tratamiento de aguas residuales. Los experimentos de lixiviación a escala de laboratorio fueron realizados con cuatro relaves con diferentes concentraciones de pirita. Los relaves fueron caracterizados por: azufre total, azufre pirítico, sulfato, azufre orgánico y análisis elemental de carbón, hidrógeno y nitrógeno. Se realizaron análisis de difracción de rayos X para conocer la composición mineralógica de las muestras. La lixiviación se realizó en una columna de laboratorio construida como un reactor de lecho compacto con un sistema de aspersión en circuito cerrado. Después de cuatro semanas de lixiviación, el lixiviado fue filtrado y evaporado hasta alcanzar una concentración de alrededor de 12% w/w, que es típico de la mayoría de los coagulantes FS en Brasil.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  • ACWA (Assoc of California Water Agencies) (2000) Review of the proposed public health goal for aluminum in drinking water. ACWA, Sacramento

    Google Scholar 

  • Becaria A, Lahiri DK, Bondy SC, Chen D, Hamadeh A, Li H, Taylor R, Campbell A (2006) Aluminum and copper in drinking water enhance inflammatory or oxidative events specially in the brain. J Neuroimmunol 176:6–23

    Article  Google Scholar 

  • Bratby J (1980) Coagulation and flocculation: with an emphasis on water and wastewater treatment. Upland Press, Croydon

    Google Scholar 

  • Brett JB, Jillian B (2003) Microbial communities in acid mine drainage. Microbiol Ecol 44:139–152

    Article  Google Scholar 

  • Buzin PJ, Vigânico WK, Silva EM, Schneider RA, Ivo AH, Menezes JCSS (2014) Production of ferrous sulfate from steelmaking mill scale. Int J Eng Sci 5:353–360

    Google Scholar 

  • Campbell A, Hamai D, Bondy SC (2001) Differential toxicity of aluminum salts in human cell lines of neural origin: implications for neurodegeneration. Neurotoxicology 22:63–71

    Article  Google Scholar 

  • Colling AV (2010) Oxidação da Pirita por Via Bacteriana em Rejeitos de Carvão. MSc Diss, Univ Federal do Rio Grande do Sul

  • Colling AV, Menezes JCSS, Schneider IAH (2011) Bioprocessing of pyrite concentrate from coal tailings for the production of the coagulant ferric sulphate. Miner Eng 24:1185–1187

    Article  Google Scholar 

  • Eaton AD, Clesceri LS, Rice EW, Greenberg AE (eds) (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Assoc, Washington DC

    Google Scholar 

  • Jiang JQ, Graham NJD (1998) Preparation and characterisation of an optimal polyferric sulphate (PFS) as a coagulant for water treatment. J Chem Technol Biot 73:351–358

    Article  Google Scholar 

  • Jiang JQ, Graham NJD, Harward C (1996) Coagulation of upland coloured water with polyferric sulphate compared to conventional coagulants. J Water Supply Res T 45(3):143–154

    Google Scholar 

  • Johnson DB, Hallberg KB (2003) The microbiology of acidic mine waters. Res Microbiol 154(7):466–473

    Article  Google Scholar 

  • Kontopoulos A (1998) Acid mine drainage control. In: Castro SH, Vergara F, Sánchez MA (eds) Effluent Treatment in the Mining Industry. Univ of Concepción, Chile

    Google Scholar 

  • Rondeau V, Commenges D, Jacqmin-Gadda H, Dartigues JF (2000) Relation between aluminum concentrations in drinking water and Alzheimer’s disease: an 8-year follow-up study. Am J Epidemiol 152(1):59–66

    Article  Google Scholar 

  • Sánchez-España FJ, López-Pamo E, Santofimia E (2007) The oxidation of ferrous iron in acidic mine effluents from the Iberian Pyrite Belt (Odiel river watershed, Huelva): field and laboratory rates. J Geochem Explor 92:120–132

    Article  Google Scholar 

  • Tchobanoglous G, Burton FL, Stensel HD (eds) (2003) Wastewater engineering: treatment and reuse. 4th edn. Metcalf and Eddy, McGraw-Hill Book Co, New York

    Google Scholar 

  • Walton JR (2006) Aluminum in hippocampal neurons from humans with Alzeiheimer’s disease. Neurotoxicology 27:385–394

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the CNPq and the Brazilian Coal Net for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. C. C. C. Menezes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Menezes, J.C.C.C., Colling, A.V., Silva, R.A.S. et al. Ferric Sulphate Coagulant Obtained by Leaching from Coal Tailings. Mine Water Environ 36, 457–460 (2017). https://doi.org/10.1007/s10230-017-0453-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0453-5

Keywords

Navigation