Advertisement

Mine Water and the Environment

, Volume 36, Issue 2, pp 283–298 | Cite as

Combined Use of Geostatistics and Multi-Criteria Decision Analysis to Determine New Pumping Well Locations in the Gol-Gohar Open Pit Mine, Iran

  • Amin Assari
  • Zargham Mohammadi
Technical Article
  • 131 Downloads

Abstract

Groundwater seepage into open pit mines must be controlled carefully. Slope instability, dewatering of blast holes, and mining operations below the groundwater table are important issues caused by groundwater seepage into the Gol-Gohar open pit mine, Iran. There are several methods to overcome these problems, such as construction of cut-off walls, ditches and sumps, horizontal drains, and pumping wells. Drilling of a new pumping well has several difficulties in which the determination of its location is a major issue. In this study, a stochastic simulation approach called simulated annealing was used to determine the best possible locations for new pumping wells. Three major groundwater variables, including the groundwater level, electrical conductivity, and transmissivity were selected for the geostatistical study. The results of simulations showed reliable correlation (Pearson) between the variables. Comparison of the variograms at different depths of the Gol-Gohar pit mine revealed that the effect of faults intensified with increasing depth. The best potential locations for drilling of new pumping wells were identified by the use of multi-criteria decision analysis performed on the simulation results. This method can be used in other regions with similar hydrogeological settings.

Keywords

Stochastic simulation MCDA Dewatering Gol-Gohar open pit mine Iran 

Zusammenfassung

Der Grundwasserzufluss in Tagebaugruben bedarf intensiver Überwachung und Steuerung. Im Tagebaubetrieb von Gol-Gohar, Iran sind maßgebliche Problemstellungen wie Böschungsinstabilität, Entwässerung von Sprengbohrlöchern und Abbaubetrieb unterhalb des Grundwasserspiegels auf Grundwasserzuflüsse zurückzuführen. Zur Bewältigung dieser Probleme existieren verschiedene Möglichkeiten, wie die Errichtung von Schlitzwänden, Gräben und Sümpfen, von Horizontaldrainagen und Entnahmebrunnen. Bei der Bohrung eines neuen Entwässerungsbrunnens sind eine Reihe von Fragen zu klären, eine wesentliche ist die der Standortwahl. In der vorliegenden Arbeit wird ein stochastisches Simulationsverfahren namens „simulated annealing“ (simulierte Abkühlung) genutzt, um optimale Standorte von neuen Entwässerungsbrunnen zu bestimmen. Drei wesentliche Grundwassergrößen, nämlich Grundwasserstand, elektrische Leitfähigkeit und Transmissivität, wurden für die geostatistische Studie verwendet. Die Simulationsergebnisse zeigten einen belastbaren Zusammenhang (Pearson) zwischen den Variablen. Der Vergleich der Variogramme für unterschiedliche Teufenniveaus des Tagebaus Gol-Gohar zeigte mit zunehmender Teufe einen sich verstärkenden Störungseinfluss. Optimale Bohrstandorte für neue Entnahmebrunnen wurden mit Hilfe einer multikriteriellen Entscheidungsanalyse auf Basis der Simulationsergebnisse abgeleitet. Die Methode kann in anderen Regionen mit ähnlichen hydrogeologischen Verhältnissen angewendet werden.

Resumen

Las filtraciones de aguas subterráneas en minas a cielo abierto deben ser controladas cuidadosamente. La inestabilidad de los taludes, la deshidratación de agujeros de explosión y operaciones mineras debajo del nivel freático, son cuestiones importantes causados por la filtración de aguas subterráneas en la mina a cielo abierto Gol-Gohar, Irán. Hay muchos métodos para superar estos problemas, como la construcción de muros de corte, zanjas y sumideros, desagües horizontales y pozos de bombeo. La perforación de los nuevos pozos de bombeo tiene muchas dificultades de las cuales la localización es la más importante. En este estudio, se usó una aproximación a través de una simulación estocástica llamada recocido simulado para determinar las mejores localizaciones para los nuevos pozos de bombeo. Para el estudio geoestático fueron seleccionadas las tres mayores variables del agua subterránea, el nivel del agua subterránea, la conductividad eléctrica y la transmisividad Los resultados de las simulaciones mostraron una correlación de confianza (Pearson) entre las variables. La comparación de los variogramas a diferentes profundidades del hoyo de la mina Gol-Gohar reveló que los efectos de las fallas se intensificaron con la profundidad. Las mejores localizaciones potenciales para la perforación de nuevos pozos de bombeo fueron identificadas por el uso de análisis de decisión multicriterio realizados sobre resultados simulados. Este método puede ser usado en otras regiones con similares características hidrogeológicas.

抽象

露天矿坑需要严格控制地下水入渗。矿坑边坡稳定性、放炮孔疏水和低于潜水面的开采条件都是影响伊朗Gol-Gohar露天矿坑地下水入渗的重要因素。修建截水墙、开挖水沟与水仓、采用水平疏水技术与施工抽水井等多种途径可用于解决矿坑地下水入渗问题。施工抽水井需考虑多方面问难,抽水井布孔是重要问题之一。随机模拟方法亦称作模拟退火法,能够用于确定最佳抽水孔位。选取地下水位、电导率和导水系数三个主要地下水变量进行了地质统计。随机模拟结果表明地下水变量之间具有可靠的相关性。地下水变量比较显示Gol-Gohar露天矿断层影响随深度加深而增大。在随机模拟基础上,运用多标准决定分析法确定了最佳布孔位置。该方法亦可用于相似水文地质条件的其它地区。

Notes

Acknowledgements

The authors thank the Gol-Gohar Mining and Industrial Company for their financial support. This research was also supported by the Research Council of Shiraz University, Iran.

References

  1. Alavi M (1994) Tectonics of the Zagros orogenic belt of Iran: new data and interpretations. Tectonophysics 229:211–238CrossRefGoogle Scholar
  2. Bredehoeft J, Belitz K, Sharp-Hansen S (1992) The hydrodynamics of the Big Horn Basin: a study of the role of faults. AAPG Bull 76:530–546Google Scholar
  3. Chandra S, Ahmed S, Ram A, Dewandel B (2008) Estimation of hard rock aquifers hydraulic conductivity from geoelectrical measurements: a theoretical development with field application. J Hydrol 357:218–227CrossRefGoogle Scholar
  4. Chihi H, Bedir M, Belayouni H (2013) Variogram identification aided by a structural framework for improved geometric modeling of faulted reservoirs: Jeffara Basin, southeastern Tunisia. Nat Resour Res 22:139–161. doi: 10.1007/s11053-013-9201-0 CrossRefGoogle Scholar
  5. De Marsily G, Delay F, Teles V, Schafmeister M (1998) Some current methods to represent the heterogeneity of natural media in hydrogeology. Hydrogeol J 6:115–130CrossRefGoogle Scholar
  6. Deutsch CV, Journel AG (1998) GSLIB geostatistical software library and user’s guide. Oxford University Press, New York CityGoogle Scholar
  7. Forster CB, Evans JP (1991) Hydrogeology of thrust faults and crystalline thrust sheets: results of combined field and modeling studies. Geophys Res Lett 18:979CrossRefGoogle Scholar
  8. Golestanifar M, Ahangari K (2012) Choosing an optimal groundwater lowering technique for open pit mines. Mine Water Environ 31:192–198CrossRefGoogle Scholar
  9. Goovaerts P (1997) Geostatistics for natural resources evaluation. Oxford University Press, New York CityGoogle Scholar
  10. Hill MC, Tiedeman CR (2006) Effective groundwater model calibration: with analysis of data, sensitivities, predictions, and uncertainty. Wiley, New YorkGoogle Scholar
  11. Hosseini Sabzevari M (2007) Evaluating the hydrogeological characteristics of aquifer in the Gol-Gohar mine, Sirjan. Shahrood University of TechnologyGoogle Scholar
  12. Huang C, Mayer AS (1997) Pump-and-treat optimization using well locations and pumping rates as decision variables. Water Resour Res 33:1001–1012CrossRefGoogle Scholar
  13. Huysmans M, Dassargues A (2009) Application of multiple-point geostatistics on modelling groundwater flow and transport in a cross-bedded aquifer (Belgium). Hydrogeol J 17:1901–1911CrossRefGoogle Scholar
  14. Isaaks EH, Srivastava RM (1989) An introduction to applied geostatistics. Oxford University Press, New York CityGoogle Scholar
  15. Jang CS, Liu CW (2004) Geostatistical analysis and conditional simulation for estimating the spatial variability of hydraulic conductivity in the Choushui River alluvial fan, Taiwan. Hydrol Process 18:1333–1350CrossRefGoogle Scholar
  16. Kusha Maadan Consulting Engineers (2006) The five-year management report of the Gol-Gohar Mine (Status Map)Google Scholar
  17. Kusha Maadan Consulting Engineers (2007) Final report of hydrogeology and mathematical model of the Gol-Gohar MineGoogle Scholar
  18. Li L, Yang T, Liang Z, Zhu W, Tang C (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85:276–288CrossRefGoogle Scholar
  19. López DL, Smith L (1995) Fluid flow in fault zones: analysis of the interplay of convective circulation and topographically driven groundwater flow. Water Resour Res 31:1489–1503CrossRefGoogle Scholar
  20. Malczewski J (1999) GIS and multicriteria decision analysis. Wiley, New YorkGoogle Scholar
  21. Malczewski J (2011) Local weighted linear combination. Trans GIS 15:439–455Google Scholar
  22. Morton KL, Van Mekerk F (1993) A phased approach to mine dewatering. Mine Water Environ 12:27–33CrossRefGoogle Scholar
  23. Niwas S, Tezkan B, Israil M (2011) Aquifer hydraulic conductivity estimation from surface geoelectrical measurements for Krauthausen test site, Germany. Hydrogeol J 19:307–315CrossRefGoogle Scholar
  24. Nowak W, Cirpka OA (2006) Geostatistical inference of hydraulic conductivity and dispersivities from hydraulic heads and tracer data. Water Resour Res 42(8): W08416, 6, doi: 10.1029/2005WR004832
  25. Patriarche D, Castro MC, Goovaerts P (2005) Estimating regional hydraulic conductivity fields—a comparative study of geostatistical methods. Math Geol 37:587–613CrossRefGoogle Scholar
  26. Remy N, Boucher A, Wu J (2009) Applied geostatistics with SGeMS: a user’s guide. Cambridge University Press, New York CityCrossRefGoogle Scholar
  27. Rinner C, Voss S (2013) MCDA4ArcMap—an open-source multi-criteria decision analysis and geovisualization tool for ArcGIS 10. Cartouche, Newslet Can Cartographic Assoc 86:12–13Google Scholar
  28. Saaty TL (1980) The analytic hierarchy process: planning, priority setting, resources allocation. McGraw Hill, New York CityGoogle Scholar
  29. Smerdon BD, Turnadge C (2015) Considering the potential effect of faulting on regional-scale groundwater flow: an illustrative example from Australia’s great artesian basin. Hydrogeol J 23:949–960CrossRefGoogle Scholar
  30. Soltani-Mohammadi S, Hezarkhani A (2013) A simulated annealing-based algorithm to locate additional drillholes for maximizing the realistic value of information. Nat Resour Res 22:229–237CrossRefGoogle Scholar
  31. Stevick E, Pohll G, Huntington J (2005) Locating new production wells using a probabilistic-based groundwater model. J Hydrol 303:231–246CrossRefGoogle Scholar
  32. Strebelle S (2002) Conditional simulation of complex geological structures using multiple-point statistics. Math Geol 34:1–21CrossRefGoogle Scholar
  33. Sun N-Z (1994) Inverse problems in groundwater modeling. Kluwer Academic, DordrechtGoogle Scholar
  34. Voss S (2015) MCDA4ArcMap. https://mcda4arcmap.codeplex.com/. Accessed 4 Feb 2015Google Scholar
  35. Worthington SR (2009) Diagnostic hydrogeologic characteristics of a karst aquifer (Kentucky, USA). Hydrogeol J 17:1665–1678CrossRefGoogle Scholar
  36. Wu Q, Wang M, Wu X (2004) Investigations of groundwater bursting into coal mine seam floors from fault zones. Int J Rock Mech Min 41:557–571CrossRefGoogle Scholar
  37. Yin ZY, Brook GA (1992) The topographic approach to locating high-yield wells in crystalline rocks: does it work? Groundwater 30:96–102CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Earth Science, Faculty of ScienceShiraz UniversityShirazIran

Personalised recommendations