Skip to main content

Advertisement

Log in

Assessment of Metal Contamination in the Mine Water of the West Bokaro Coalfield, India

Bewertung der Metallkontamination von Grubenwässern im Kohlenrevier von West Bokaro, Indien

Relevamiento de la contaminación por metales en el agua de mina del área carbonífera West Bokaro, India

煤田(印度)矿坑水金属污染评价

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

This study was carried out in the West Bokaro coalfield area of the Jharkhand state of India to assess water quality for drinking and domestic purposes. Thirty mine water samples were collected from opencast and underground mines, and concentrations of Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se, and Zn were determined using ICP-MS. Spatial distribution maps were prepared using GIS software so that the quality of the mine water could be easily understood. Metal concentrations were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location, but there were more significant seasonal variations in the opencast mine water than in the underground mine water. The concentrations of Al, Ba, Fe, Mn, and Ni exceeded the desirable as well as the permissible drinking water limits in both seasons. The quality of the surface water as well as the groundwater in the region may be adversely affected by the high metal concentrations in this mine water.

Zusammenfassung

Die Studie wurde im Kohlerevier von West Bokaro, Provinz Jharkhand, Indien mit dem Ziel durchgeführt, die Eignung von Wässern für eine häusliche bzw. Trinkwassernutzung zu bewerten. 30 Grubenwasserproben aus Tagebau- und Tiefbaugruben wurden mittels ICP-MS auf ihre Konzentrationen an Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se und Zn untersucht. Zur besseren Interpretation der Wasserqualitäten wurden Verteilungskarten mittels GIS erstellt. Es zeigte sich, dass die Metallkonzentrationen in der Vormonsun-Saison generell höher waren als in der Nachmonsun-Periode, wobei die saisonalen Unterschiede bei den Tagebauwässern höher ausfielen als bei den aus Tiefbaugruben stammenden Proben. Die Konzentrationen von Al, Ba, Fe, Mn und Ni überstiegen die Trinkwassergrenzwerte in beiden Jahreszeiten. Sowohl die Oberflächenwasser- als auch die Grundwasserqualität in der Region kann durch die hohen Metallkonzentrationen dieser Grubenwässer nachteilig beeinflusst werden.

Resumen

Este estudio fue realizado en el área carbonífera West Bokaro del estado Jharkhand de la India para relevar la calidad de agua para consumo y usos domésticos. Se colectaron 30 muestras de agua de mina desde minas a cielo abierto y subterráneas y en ellas se determinaron las concentraciones de Al, As, Ba, Cr, Cu, Fe, Mn, Ni, Se y Zn usando ICP-MS. Los mapas de distribución espacial fueron preparadas usando software GIS de modo que la calidad del agua de mina fuera fácilmente interpretada. Las concentraciones de metales fueron mayores en la estación pre-monsónica que en la estación post-monsónica, independientemente de la localización, pero hubo más variaciones significativas en el agua de minas a cielo abierto que en el agua de minas subterráneas. Las concentraciones de Al, Ba, Fe, Mn y Ni excedieron los límites deseables y permitidos para el agua de consumo en ambas estaciones. La calidad del agua superficial así como la del agua subterránea en la región puede verse afectada negativamente por las altas concentraciones de metales enel agua de mina.

抽象

茅口灰岩富水岩溶发育是众多南方诸多煤矿突水的重要原因。基于渗流-应力耦合与强度拆减法分析了防水煤岩柱稳定性,建立防水煤岩柱安全因子(FOS)。在工程实践基础上提出防水煤岩柱宽度标准,防水煤岩柱宽度应考虑爆炸孔深度和爆炸影响深度,安全因子(FOS)达1.5。当强度拆减因子增大时,有效防水煤岩柱宽度减小,防水煤岩柱渗透性和突水性同时增加。湖南七一煤矿“4·16”突水事故模拟结果显示,大巷回采仅保留3m宽防水煤岩柱不足以抵抗4MPa水压是引发突水事故主要原因.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • BIS (2003) Indian standard drinking water specifications IS 10500:1991, edition 2.2 (2003–2009), Bureau of Indian Standards, New Delhi

  • Bradon C, Homman K (1995) The cost of inaction: valuing the economy-wide cast of environmental degradation in India. Asia Environment Div, World Bank, 7 Oct

  • Chandra D (1992) Mineral resources of India, 5: Jharia coalfields. J Geol Soc India, Bangalore 5:1–149

    Google Scholar 

  • Edet AE, Offiong OE (2002) Evaluation of water quality pollution indices for heavy metal contamination monitoring. A study case from Akpabuyo-Odukpani area, Lower Cross River Basin (southeastern Nigeria). Geo J 57:295–304

    Google Scholar 

  • Giri S, Singh AK (2014) Assessment of surface water quality using heavy metal pollution index in Subarnarekha River, India. Water Qual Expo. Health (London) 5(4):173–182

    Google Scholar 

  • Giri S, Singh G, Gupta SK, Jha VN, Tripathi RM (2010) An evaluation of metal contamination in surface and groundwater around a proposed uranium mining site, Jharkhand, India. Mine Water Environ 29(3):225–234

    Article  Google Scholar 

  • Gupta M, Srivastava PK (2010) Integrating GIS and remote sensing for identification of groundwater potential zones in the hilly terrain of Pavagarh, Gujarat, India. Water Int 35:233–245

    Article  Google Scholar 

  • Krishan G, Singh S, Kumar CP, Garg PK, Gurjar S, Ghosh NC, Chaudhary A (2016a) Assessment of groundwater quality for drinking purpose by using water quality index (WQI) in Muzaffarnagar and Shamli Districts, Uttar Pradesh, India. Hydrol Current Res 7:1

    Google Scholar 

  • Krishan G, Singh S, Singh RP, Ghosh NC (2016b) Water quality index of groundwater in Haridwar district, Uttarakhand, India. Water Energy Int 58(10):55–58

    Google Scholar 

  • Mahato MK, Singh PK, Tiwari AK (2014) Evaluation of metals in mine water and assessment of heavy metal pollution index of East Bokaro Coalfield area, Jharkhand, India. Int J Earth Sci Eng 7(04):1611–1618

    Google Scholar 

  • Mahato MK, Singh PK, Tiwari AK, Singh AK (2016) Risk assessment due to intake of metals in groundwater of East Bokaro Coalfield, Jharkhand, India. Expo Health (London) 8:265–275

    Article  Google Scholar 

  • Mohan SV, Nithila P, Reddy SJ (1996) Estimation of heavy metal in drinking water and development of heavy metal pollution index. J Environ Sci Health 31(2):283–289

    Google Scholar 

  • Olias M, Nieto JM, Sarmiento AM, Ceron JC, Canovas CR (2004) Seasonal water quality variations in a river affected by acid mine drainage: the Odiel River (South West Spain). Sci Total Environ 333:267–281

    Article  Google Scholar 

  • Pathak V, Banerjee AK (1992) Mine water pollution studies in Chapha Incline, Umaria coalfield, eastern Madhya Pradesh, India. Mine Water Environ 11(2):27–35

    Article  Google Scholar 

  • Prasad B, Bose JM (2001) Evaluation of heavy metal pollution index for surface and spring water near a limestone mining area of the lower Himalayas. Environ Geol 41:183–188

    Article  Google Scholar 

  • Prasad B, Jaiprakas KC (1999) Evaluation of heavy metals in ground water near mining area and development of heavy metal pollution index. J Environ Sci A 34(1):91–102

    Google Scholar 

  • Prasad B, Kumari S (2008) Heavy metal pollution index of ground water of an abandoned opencast mine filled with fly ash. Mine Water Environ 27(4):265–267

    Article  Google Scholar 

  • Radojevic M, Bashkin VN (1999) Practical environmental analysis. Royal Soc of Chemistry, London

  • Ramakrishnalah CR, Sadashivalah C, Ranganna G (2009) Assessment of water quality index for the groundwater in Tumkur Taluk, Karnataka state, India. Electron J Chem 6(2):523–530

    Google Scholar 

  • Reddy SJ (1995) Encyclopaedia of environmental pollution and control. Vol 1, Environ Media, Karlia p 342

  • Senapaty A, Behera P (2012) Concentration and distribution of trace elements in different coal seams of the Talcher coalfield, Odisha. Int J Earth Sci Eng 5(05):80–87

    Google Scholar 

  • Singh G (1998) Impact of coal mining on mine water quality. Int J Mine Water 7(3):49–59

    Article  Google Scholar 

  • Singh G, Kamal RK (2016) Heavy metal contamination and its indexing approach for groundwater of Goa mining region, India. Appl Water Sci. doi:10.1007/s13201-016-0430-3

    Google Scholar 

  • Singh AK, Mondal GC, Kumar S, Singh TB, Tewary BK, Sinha A (2008) Major ion chemistry, weathering processes and water quality assessment in upper catchment of Damodar River basin, India. Environ Geol 54:745–758

    Article  Google Scholar 

  • Singh AK, Mahato MK, Neogi B, Singh KK (2010) Quality assessment of mine water in the Raniganj coalfield area, India. Mine Water Environ 29(4):248–262

    Article  Google Scholar 

  • Singh AK, Mahato MK, Neogi B, Mondal GC, Singh TB (2011) Hydrogeochemistry, elemental flux, and quality assessment of mine water in the Pootkee-Balihari mining area, Jharia coalfield, India. Mine Water Environ 30(3):197–207

    Article  Google Scholar 

  • Singh AK, Raj B, Tiwari AK, Mahato MK (2013a) Evaluation of hydrogeochemical processes and groundwater quality in the Jhansi district of Bundelkhand region, India. Environ Earth Sci 70(3):1225–1247

    Article  Google Scholar 

  • Singh PK, Tiwari AK, Panigarhy BP, Mahato MK (2013b) Water quality indices used for water resources vulnerability assessment using GIS technique: a review. Int J Earth Sci Eng 6(6–1):1594–1600

    Google Scholar 

  • Soni AK (2007) Evaluation of hydrogeological parameters associated with limestone mining: a case study from Chandrapur, India. Mine Water Environ 26(2):110–118

    Article  Google Scholar 

  • Tiwari AK, De Maio M, Singh PK, Mahato MK (2015) Evaluation of surface water quality by using GIS and a heavy metal pollution index (HPI) model in a coal mining area, India. Bull Environ Contam Toxicol 95:304–310

    Article  Google Scholar 

  • Tiwari AK, Singh PK, Mahato MK (2016a) Environmental geochemistry and a quality assessment of mine water of the West Bokaro coalfield, India. Mine Water Environ. doi:10.1007/s10230-015-0382-0

    Google Scholar 

  • Tiwari AK, Singh PK, Singh AK, De Maio M (2016b) Estimation of heavy metal contamination in groundwater and development of a heavy metal pollution index by using GIS technique. Bull Environ Contam Toxicol 96:508–515

    Article  Google Scholar 

  • Tiwary RK (2001) Environmental impact of coal mining on water regime and it management. Water Air Soil Pollut 132:185–199

    Article  Google Scholar 

  • Tiwary RK, Dhar BB (1994) Environmental pollution from coal mining activities in Damodar River Basin, India. Mine Water Environ 13:1–10

    Google Scholar 

  • Tripathy DP (2010) Determination of trace elements concentration and trace elements index in mine water in some fire and non-fire affected areas of Jharia coalfield, India. Pollut Res 29:385–390

    Google Scholar 

  • Vega M, Pardo R, Barrado E, Deban L (1998) Assessment of seasonal and polluting effects on the quality of river water by exploratory data analysis. Water Res 32:3581–3592

    Article  Google Scholar 

  • WHO (2006) Guidelines for drinking-water quality. 3rd edit, World Health Org, Geneva

    Google Scholar 

  • Yadav KK, Gupta N, Kumar V, Sharma S, Arya S (2015) Water quality assessment of Pahuj River using water quality index at Unnao Balaji, MP, India. Int J Sci Basic Appl Res 19(1):241–250

    Google Scholar 

Download references

Acknowledgements

The authors thank the Director, Central Institute of Mining and Fuel Research, Dhanbad for providing research facilities and Professor D. C. Panigarhi, Director of the Indian Institute of Technology (Indian School of Mines) for his kind support. One of the authors (Ashwani Kumar Tiwari) received financial support from the ISM/MHRD/Government of India. Our hearty thanks to Dr. Abhay Kumar Singh, Principal Scientist at the Central Institute of Mining and Fuel Research, for his support and encouragement, and the editor and anonymous reviewers for their valuable suggestions on how to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashwani Kumar Tiwari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10230_2017_440_MOESM1_ESM.pdf

Concentration contour showing spatial distribution for Mn in the mine water throughout the study area in the post-monsoon season (PDF 369 KB)

10230_2017_440_MOESM2_ESM.pdf

Concentration contour showing spatial distribution for Mn in the mine water throughout the study area in the pre-monsoon season (PDF 371 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tiwari, A.K., Singh, P.K. & Mahato, M.K. Assessment of Metal Contamination in the Mine Water of the West Bokaro Coalfield, India. Mine Water Environ 36, 532–541 (2017). https://doi.org/10.1007/s10230-017-0440-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0440-x

Keywords

Navigation