Skip to main content

Advertisement

Log in

Numerical Analysis of Karst Water Inrush and a Criterion for Establishing the Width of Water-resistant Rock Pillars

Numerische Analyse von Karstwassereinbrüchen und ein Kriterium zur Bestimmung der Breite von Wassersicherheitspfeilern

Análisis numérico de la irrupción de agua karst y un criterio para establecer el espesor de los pilares de roca resistentes al agua

岩溶突水及防水煤岩柱尺寸标准数值分析

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Water-bearing caves in the Maokou limestone have caused disastrous water inrushes in mines in southern China. A linkage analysis between the hydro-mechanical coupling and the strength reduction method was used to investigate the stability of water-resistant rock pillars. The factor of safety (FOS) of the pillar was established, and a criterion for establishing the required width of the pillar was proposed in engineering practice, i.e., the width of the pillar should be based on the blast hole depth and blast-disturbance depth, along with a FOS of 1.5. The permeability of the water-resistant pillar and the probability of water inrush both increase as the strength reduction factor increases because the effective width of the pillar narrows. A numerical analysis of the Qiyi coal mine “4·16” water inrush accident shows that the cause of the inrush was that the 3.0 m wide barrier left by roadway excavation was too narrow to withhold the karst water pressure of about 4.0 MPa.

Zusammenfassung

Die häufig vorhanden wassererfüllten Hohlräume im Maokou-Kalkstein können katastrophale Wassereinbrüche bei Bergbauaktivitäten in Südchina bewirken. Durch die Verwendung von Verküpfungsanalysen zwischen einen gekoppelten hydromechanischen Model (HM) und einer Festigkeits-Reduktions-Methode (SRM) wurde die Stabilität der Wassersicherheitspfeiler untersucht. Der Sicherheitsfaktor (factor of safety, FOS) der Pfeiler wurde festgelegt und als Kriterium für benötigte Breite der Pfeiler in Ingenieurpraxis vorgeschlagen. Beispielsweise wird die Pfeilerbreite auf Grundlage der Bohrlochtiefe und des -einflusses mit einem FOS-Wert von 1.5 festgelegt. Die Permeabilität der Wassersicherheitspfeiler und die Wahrscheinlichkeit eines Wassereinbruchs steigen mit der Erhöhung festigkeitsmindernder Faktoren, ausgedrückt durch einen Festigkeits-Reduktions-Faktor, aufgrund des veränderten Wertes für die effektive Pfeilerschlankheit. Eine numerische Analyse des “4*16-Qiyi Kohlenbergbau-Unfalls” zeigt, dass die Ursache für den Wassereinbruch in einer für einen Karstwasserdruck von ungefähr 4.0 MPa mit 3.0 m zu schmal bemessenen Stecken-Barriere lag.

Resumen

Las cuevas que contienen agua están ampliamente distribuidas en la piedra caliza Maoko y han causado desastrosas irrupciones de agua en el sur de China. Se utilizó un análisis integrando el acoplamiento hidromecánico y el método de reducción de la resistencia para investigar la estabilidad de los pilares de roca resistentes al agua. Se investigó el factor de seguridad de los pilares (FOS) y se propuso un criterio para establecer el espesor requerido para los pilares, i.e., el espesor debería ser calculado en base a las profundidades del agujero de la explosión y de la perturbación provocada por ésta, junto con un FOS de 1.5. Tanto la permeabilidad del pilar resistente al agua como la probabilidad de irrupción de agua se incrementan cuando el factor de reducción de la resistencia se incrementa porque el ancho efectivo del pilar se estrecha. Un análisis numérico del accidente de irrupción de agua en la mina de carbón Qiyi “4*16” muestra que la causa de la irrupción fue que la barrera de 3.0 m de ancho sobre la izquierda de la excavación era demasiada delgada para contener la presión de agua karst de alrededor de 4.0 MPa.

摘要

茅口灰岩富水岩溶发育是众多中国 南方诸多煤矿突水的重要原因。基于渗流-应力耦合与强度折 减法分析了防水煤岩柱稳定性,建立防水煤岩柱安全因子(FOS)。在工程实践基础上提出防水煤岩柱宽度标准,防水煤岩柱宽度应考虑爆炸孔深度和爆炸影响深度,安全因子(FOS)达1.5。当强度折 减因子增大时,有效防水煤岩柱宽度减小,防水煤岩柱渗透性和突水性同时增加。湖南七一煤矿“4•16”突水事故模拟结果显示,大巷回采仅保留3m宽防水煤岩柱不足以抵抗4MPa水压是引发突水事故主要原因。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Cheng YM, Lansivaara T, Wei WB (2007) Two-dimensional slope stability analysis by limit equilibrium and strength reduction methods. Comput Geotech 34:137–150

    Article  Google Scholar 

  • Cundall PA (2001) FLAC manual: a computer program for fast lagrangian analysis of continua. 1st revision. Itasca Consulting Group Inc, Minneapolis

  • Dai S, Ren D, Tang Y, Yue M, Hao L (2005) Concentration and distribution of elements in Late Permian coals from western Guizhou Province, China. Int J Coal Geol 61(1):119–137

    Article  Google Scholar 

  • David C, Menendez B, Zhu W, Wong TF (2001) Mechanical compaction, microstructures and permeability evolution in sandstones. Phys Chem Earth (A) 26: 45–51

    Article  Google Scholar 

  • Dawson EM, Roth WH, Drescher A (1999) Slope stability analysis by strength reduction. Geotechnique 49(6):835–840

    Article  Google Scholar 

  • Griffiths DV, Lane PA (1999) Slope stability analysis by finite elements. Geotechnique 49(3):387–403

    Article  Google Scholar 

  • Guo H, Adhikary D, Craig M (2009) Simulation of mine water inflow and gas emission during longwall mining. Rock Mech Rock Eng 42(1):25–51

    Article  Google Scholar 

  • He KQ, YU YJ, Fei W (2011) Overview of karst geo-environments and karst water resources in north and south China. Environ Earth Sci 64:1865–1873

    Article  Google Scholar 

  • He KQ, Wang RL, Jiang WF (2012) Groundwater inrush channel detection and curtain grouting of the Gaoyang iron ore mine, China. Mine Water Environ 31(4):297–306

    Article  Google Scholar 

  • Itasca Consulting Group Inc (2002) Fast Lagrangian analysis of continua in 3-Dimensions. Itasca Consulting Group, Minnesota

    Google Scholar 

  • Jing L (2003) A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering. Int J Rock Mech Min 40(3):283–353

    Article  Google Scholar 

  • Li SP, Li YS, Li Y, Wu ZY, Zhou G (1994) Permeability-strain equations corresponding to the complete stress-strain path of Yinzhuang sandstone. Int J Rock Mech Min Sci Geomech Abstr 31(4):383–391

    Article  Google Scholar 

  • Li LH, Yang TH, Liang ZZ, Zhu WC, Tang CA (2011) Numerical investigation of groundwater outbursts near faults in underground coal mines. Int J Coal Geol 85(3):276–288

    Google Scholar 

  • Lin H, Cao P, Li JT, Jiang XL, He ZM (2010) Deformation stability of three-dimensional slope based on Hoek-Brown criterion. Rock Soil Mech 31:3656–3660 (Chinese)

    Google Scholar 

  • Louis C (1974) Rock hydraulics. In: Muller L (ed) Rock mechanics. Springer, New York, pp 300–387

    Google Scholar 

  • Lu Y, Wang L (2015) Numerical simulation of mining-induced fracture evolution and water flow in coal seam floor above a confined aquifer. Comput Geotech 67:157–171

    Article  Google Scholar 

  • Matsui T, San KC (1992) Finite element slope stability analysis by shear strength reduction technique. Soils Found 32(1):59–70

    Article  Google Scholar 

  • Miao XX, Wang A, Sun YJ (2009) Research on theory of mining with water resources protection and its application to arid and semi-arid mining region. Chin J Rock Mech Eng 28(2):217–227 (In Chinese)

    Google Scholar 

  • Miao XX, Cui XM, Wang JA, Xu JL (2011) The height of fractured water-conducting zone in undermined rock strata. Eng Geol 20(1):32–39

    Article  Google Scholar 

  • Shi L, Singh RN (2001) Study of mine water inrush from floor strata through faults. Mine Water Environ 20(3):140–147

    Article  Google Scholar 

  • Sun W, Wu Q, Dong D, Jiao J (2012) Avoiding coal–water conflicts during the development of China’s large coal-producing regions. Mine Water Environ 31(1):74–78

    Article  Google Scholar 

  • Tang CA (1997) Numerical simulation on progressive failure leading to collapse and associated seismicity. Int J Rock Mech Min Sci 34(2):249–261

    Article  Google Scholar 

  • Tsang CF, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays-in the context of radioactive waste disposal. Int J Rock Mech Min 42(1):109–125

    Article  Google Scholar 

  • Wang JA, Park H (2003) Coal mining above a confined aquifer. Int J Rock Mech Min 40(4):537–551

    Article  Google Scholar 

  • Wang CS, Bai HB, Liu SC (2010) Mine water issues in China. Mine Water and Innovative Thinking, Proc, IMWA 2010 Symp, Sydney, NS, Canada, pp 445–448

  • Wu Q, Wang M (2006) Characterization of water bursting and discharge into underground mines with multi-layered groundwater flow systems in the north China coal basin. Hydrogeol J 14(6):882–893

    Article  Google Scholar 

  • Wu Q, Wang M, Wu X (2004) Investigations of groundwater bursting into coal mine seam floors from fault zones. Int J Rock Mech Min Sci 41(4):557–571

    Article  Google Scholar 

  • Xiao GC, Irvin RA, Farmer IW (1991) Water inflows into longwall workings in the proximity of aquifer rocks. Min Eng 151(358):9–13

    Google Scholar 

  • Yang XL, Huang F (2009) Stability analysis of shallow tunnels subjected to seepage with strength reduction theory. J Cent South Univ 16:1001–1005

    Article  Google Scholar 

  • Yang TH, Tham LG, Tang CA, Liang ZZ, Tsui Y (2004) Influence of heterogeneity of mechanical properties on hydraulic fracturing in permeable rocks. Rock Mech Rock Eng 37(4):251–275

    Article  Google Scholar 

  • Yang TH, Liu J, Zhu WC, Elsworth D, Tham LG, Tang CA (2007) A coupled flow-stress-damage model for groundwater outbursts from an underlying aquifer into mining excavations. Int J Rock Mech Min 44(1):87–97

    Article  Google Scholar 

  • Yu L, Liu J (2015) Stability of interbed for salt cavern gas storage in solution mining considering cusp displacement catastrophe theory. Petrol 1:82–90

    Article  Google Scholar 

  • Zhang JC (2005) Investigations of water inrushes from aquifers under coal seams. Int J Rock Mech Min Sci 42:350–360

    Article  Google Scholar 

  • Zhang HQ, He YN, Tang CA., Ahmad B, Han LJ (2009) Application of an improved flow-stress- damage model to the criticality assessment of water inrush in a mine: a case study. Rock Mech Rock Eng 42:911–930

    Article  Google Scholar 

  • Zhao YL, Wu QH, Wang WJ, Wan W, Zhao FJ (2010) Strength reduction method to study stability of goaf overlapping roof based on catastrophe theory. Chin J Rock Mech Eng 29(7):1424–1434 (In Chinese)

    Google Scholar 

  • Zhao YL, Tang JZ, Chen Y, Zhang LY. Wang WJ, Wan W, Liao JP (2017) Hydromechanical coupling tests for mechanical and permeability characteristics of fractured limestone in complete stress–strain process. Environ Earth Sci 76:1–18

    Article  Google Scholar 

  • Zhu B, Wu Q, Yang J, Cui T (2013) Study of pore pressure change during mining and its application on water inrush prevention: a numerical simulation case in Zhaogezhuang coal mine, China. Environ Earth Sci 71(50):2115–2132

    Google Scholar 

  • Zienkiewicz OC, Humpheson C, Lewis RW (1975) Associated and non-associated visco-plasticity and plasticity in soil mechanics. Geotechnique 25(4):671–689

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Natural Science Foundation of China (Grants 51274097, 51434006, 51304057), the Natural Science Foundation of Hunan province (2015JJ2067), and the Open Projects of State Key Laboratory of Coal Resources and Safe Mining, CUMT (SKLCRSM16KF12) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yanlin Zhao or Yixian Wang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Appendix 1. The flow chart for implementing HM-SRM linkage analysis (PDF 96 KB)

Appendix 2. Experimental determination of mechanical and hydraulic properties of the fractured limestone (PDF 197 KB)

10230_2017_438_MOESM3_ESM.docx

Fig.14 (a) Hydro-mechanical coupled test setup (TAW-2000), (b) Deformation sensor measurement system, and (c) Permeability coefficient – axial strain curve for specimen S05 in complete stress-strain process at confining stress of 10.0 MPa and pore fluid pressure of 4.0 MPa (DOCX 13 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Luo, S., Wang, Y. et al. Numerical Analysis of Karst Water Inrush and a Criterion for Establishing the Width of Water-resistant Rock Pillars. Mine Water Environ 36, 508–519 (2017). https://doi.org/10.1007/s10230-017-0438-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-017-0438-4

Keywords

Navigation