Mine Water and the Environment

, Volume 36, Issue 2, pp 239–247 | Cite as

Do Mining Activities Significantly Affect Feeding Behavior of Freshwater Benthic Macroinvertebrates? A Case Study in South Sardinia (Italy)

Technical Article

Abstract

We investigated the cascading effects of chemical contaminants on alder leaf detritus quality and the exploitation of this feeding resource by benthic macroinvertebrates (isopods, gastropods, and mayfly nymphs). Trophic behavior and energetics of benthic macroinvertebrates were used to evaluate the effects of contaminants on detritus exploitation. A two-way factorial nested experimental design was used to statistically quantify how leaf detritus origin (polluted and unpolluted streams) and the pollution level of the site selected for microbial conditioning of the detritus could affect the feeding resource quality for aquatic benthic macroinvertebrates, as measured by their trophic behavior (i.e. food selection) and exploitation (i.e. food ingestion). Alder leaves collected from a polluted stream in a former mining area (South-Sardinia, Italy) had Cd, Pb, and Zn concentrations up to 10 times that of leaves collected from an unpolluted stream. When benthic macroinvertebrates were given the option to choose, they all selected leaves from the unpolluted stream and/or those conditioned in the unpolluted stream. Ingestion rates were also significantly affected by both considered factors: leaf origin and conditioning. In addition, synergistic effects strongly increased the chemical contaminant stress on the leaf detritus quality. These results show that the terrestrial component of land–water ecotones affected by mining can be a relevant indirect pathway of chemical stress to benthic macroinvertebrate species.

Keywords

Water contamination Chemical contaminants Microbial conditioning Alder leaves Detritivore macroinvertebrates Streams 

Beeinflussen Bergbauaktivitäten das Freßverhalten von benthischen Süßwassermakroinvertebraten? Eine Fallstudie in Südsardinien (Italien)

Zusammenfassung

Wir untersuchten den Kaskadeneffekt chemischer Kontaminanten auf die Qualität von Erlenlaubdetritus und auf die Nutzung dieser Nahrungsresource durch benthische Makroinvertebraten (Isopoda, Gastropoda und Nymphen von Ephemeroptera). Das trophische Verhalten und die Energetik benthischer Makroinvertebraten wurden verwendet, um die Effekte von Kontaminanten auf die Nutzung von Detritus zu bewerten. Ein experimenteller Doppelwegeinflussversuchsansatz wurde gewählt, um statistisch zu quantifizieren, wie Blattdetritus aus kontaminierten und nicht-kontaminierten Bächen und das Niveau der Kontamination am ausgewählten Ort der Probe, an welchem die mikrobielle Konditionierung des Detritus stattfand, die Qualität der Nahrungsressource für aquatische benthische Makroinvertebraten beeinflussen könnte, gemessen an ihrem trophischen Verhalten (d.h. Nahrungsselektion) und Nutzung (Nahrungsaufnahme). Erlenblätter, aufgesammelt in einem kontaminierten Bach in einem Altbergbaugebiet (Sardinien, Italien), hatten Cd, Pb und Zn-Konzentrationen bis zum Zehnfachen von Blättern aus einem nicht-kontaminierten Bach. Wenn sie die Wahl hatten, bevorzugten die Makroinvertebraten Blätter aus dem nicht-kontaminierten Bach bzw. solche, die in dem nicht-kontaminierten Bach konditioniert worden waren. Die Aufnahmeraten waren durch beide Faktoren signifikant beeinflusst: Blattherkunft und Konditionierung. Zusätzlich erhöhten synergistische Effekte stark die Belastung der Blattqualität durch chemische Kontaminanten. Diese Ergebnisse zeigen, daß die terrestrische Komponente der bergbaubeeinflussten Land-Wasser Ökotone ein erheblicher indirekter Pfad chemischer Belastung auf Arten benthischer Makroinvertebraten sein kann.

¿Es afectado el comportamiento alimenticio de los macroinvertebrados bentónicos por las actividades mineras? Un caso de estudio en Cerdeña Sur (Italia)

Resumen

Hemos investigado los efectos en cascada de los contaminantes químicos sobre la calidad del detrito de las hojas del aliso y la explotación de este recurso alimentario por los macroinvertebrados bentónicos (isópodos, gasterópodos y ninfas de las moscas). También se evaluaron los efectos de los contaminantes sobre la explotación de detritos a través de la energética y el comportamiento trófico de los macroinvertebrados. Se utilizó un diseño experimental factorial de dos vías para cuantificar estadísticamente cómo el origen del detrito de hoja (contaminadas y no contaminadas) y el nivel de contaminación del sitio seleccionado para el acondicionamiento microbiano de los detritos podría afectar la calidad de los recursos de alimentación de los macroinvertebrados bentónicos acuáticos, medidos por su comportamiento trófico (i.e., selección de alimento) y explotación (i.e., ingestión de alimento). Las hojas colectadas en una zona contaminada en un área minera (Cerdeña, Italia) tenían Cd, Pb y Zn en concentraciones 10 veces superiores a las de las hojas colectadas en zonas no contaminadas. Mientras los macroinvertebrados bentónicos tuvieron opción, ellos seleccionaron hojas de zonas no contaminadas y/o aquellos acondicionadas en una zona no contaminada. Las velocidades de ingestión fueron también significativamente por el orígen de la hoja y su acondicionamiento. Además, los efectos sinérgicos incrementaron fuertemente el estrés provocado por la contaminación química sobre la calidad del detrito de hoja. Estos resultados muestran que el componente terrestre de los ecotones terrestres afectados por la minería puede ser una vía indirecta relevante de estrés químico para las especies de macroinvertebrados bentónicos.

摘 要

研究了化学污染物对赤杨落叶碎屑的影响及赤杨落叶碎屑作为食物对底栖大型无脊椎动物(等足目、腹足纲和蜉蝣稚虫)进食行为的级联影响。以底栖大型无脊椎动物营养行为和力能特征来判断污染物对落叶碎屑利用率的影响。采用两阶巢试验设计定量评价了落叶碎屑来源(污染河流和非污染河流)和场地污染水平(经微生物处理的碎叶)如何影响水生底栖大型无脊椎动物的食物质量,表现为底栖大型无脊椎动力的营养行为(例如食物选择)和食物利用率(例如食物摄入)特征。从意大利撒丁岛老采矿区采集的赤杨叶的镉、铅和锌污染物浓度是非污染河流赤杨叶的10倍。当用两种落叶碎屑喂食大型底栖无脊椎动物时,它们选择未污染河流的碎叶或经微生物处理的碎叶。碎叶摄入率明显受碎叶来源和是否微生物处理两种因素影响。同时,协同作用明显增强了化学污染物对落叶碎屑质量的压力。研究结果表明,在受采矿影响的陆-水群落交错区,受采矿影响的陆生群落成为底栖大型无脊椎动物种群间接遭受化学污染压力的通道

Notes

Acknowledgements

This research was developed within the Italian MIUR - PRIN projects, BIOforIU and LifeWatch-ITA. We are grateful to the University of Cagliari and to Dr. C. Dadea, Dr. C. Solla and Dr. A. Ponti for experimental and field activities, and to S. Janzen for language review.

References

  1. Allard M, Moreau G (1986) Leaf decomposition in an experimentally acidified stream channel. Hydrobiologia 139(2):109–117CrossRefGoogle Scholar
  2. Barbone E, Rosati I, Pinna M, Basset A (2007) Taxonomic and dimensional structure of benthic macroinvertebrate guilds in the Margherita di Savoia Salt Pans (Italy). Transit Water Bull 1(4): 21–31Google Scholar
  3. Bärlocher F (1981) Role of aquatic hyphomicetes in the trophic structure of streams. In: Wicklow DT, Carrol GC (eds) The fungal community, its organization and role in the ecosystem. Marcel Dekker, New York City, pp 743–760Google Scholar
  4. Basset A (1993) Resource-mediated effects of stream pollution food adsorption of Asellus aquaticus (L.) populations. Oecologia 93:315–321CrossRefGoogle Scholar
  5. Basset A, Barbone E, Rosati I, Vignes F, Breber P, Specchiulli A, D’Adamo R, Renzi M, Focardi S, Ungaro N, Pinna M (2013) Resistance and resilience of ecosystem descriptors and properties to dystrophic events: a study case in a Mediterranean lagoon. Transit Water Bull 7(1):1–22Google Scholar
  6. Benedetti-Cecchi L (2004) Experimental design and hypothesis testing in ecology. Biol Mar Medit 11(1):407–455Google Scholar
  7. Boni M (1994) Ores in southwestern Sardinia. In: Bechstädt TM (Eds) Sedimentological, stratigraphical and ore deposits field guide of the autochthonous Cambro–Ordovician of southwestern Sardinia. Mem Descr Carta Geol Ital Servizio Geologico Nazionale Italy 48:155–184Google Scholar
  8. Borsodi AK, Vladár P, Cech G, Gedeon G, Beszteri B, Mic-sinai A, Reskóné MN, Márialigeti K (2003) Bacterial activities in sediment of Lake Velencei, Hungary. Hydrobiologia 506–509:721–728CrossRefGoogle Scholar
  9. Carlson E, Zelikoff JT (2008) The immune system of fish: a target organ of toxicity. In: Di Giulio RT, Hinton DE (eds) The toxicology of fishes. CRC Press, USA, p 32Google Scholar
  10. Cidu R, Biddau R, Nieddu G (2007) Rebound at Pb–Zn mines hosted in carbonate aquifers: influence on the chemistry of ground water. Mine Water Environ 26:88–101CrossRefGoogle Scholar
  11. Cidu R, Biddau R, Fanfani L (2009) Impact of past mining activity on the quality of groundwater in SW Sardinia (Italy). J Geochem Explor 100:125–132CrossRefGoogle Scholar
  12. Cobb GP, Sands K, Waters M, Wixson BG, Dorward-King E (2000) Accumulation of chemical contaminants by vegetables grown in mine wastes. Environ Toxicol 19(3):600–607CrossRefGoogle Scholar
  13. Coull BC (1990) Are members of the meiofauna food for higher trophic levels? T Am Microsc Soc 109: 233–246Google Scholar
  14. Coull BC, Chandler GT (1992) Pollution and meiofauna: field, laboratory and mesocosm studies. Oceanogr. Mar Biol 30:191–271Google Scholar
  15. Dadea C, Ponti A, Basset A, Caboi R (1996) Effects of tailing leaching on water chemistry, structure and functions of detritus-based communities. S. It.E. Atti 17:769–773Google Scholar
  16. Dahl U, Lind CR, Gorokhova E, Eklund B, Breitholtz M (2009) Food quality effects on copepod growth and development: Implications for bioassays in ecotoxicological testing. Ecotox Environ Safe 72:351–357Google Scholar
  17. Di Gregorio F, Massoli Novelli R (1988) Impatto ambientale delle attività minerarie in Sardegna. Bollettino della Società Sarda di Scienze Naturali 26:17–42Google Scholar
  18. Di Sabatino A, Cristiano G, Pinna M, Lombardo P, Miccoli FP, Marini G, Vignini P, Cicolani B (2014). Structure, functional organization and biological traits of macroinvertebrate assemblages from leaf-bags and benthic samples in a third-order stream of Central Apennines (Italy). Ecol Indic 46:84–91Google Scholar
  19. Fonnesu A, Pinna M, Basset A (2004) Spatial and temporal variation of detritus breakdown rates in the River Flumendosa basin (Sardinia, Italy). Int Rev Hydrobiol 89(5–6):443–452Google Scholar
  20. Gee JM (1989) An ecological and economic review of meiofauna as food for fish. Zool J Linn Soc Lond 93:243–261Google Scholar
  21. Gessner MO, Chauvet E, Dobson M (1999) A perspective on leaf litter breakdown in stream. Oikos 85(2):377–384CrossRefGoogle Scholar
  22. Gony S (1990) Short note on the effects of cadmium on the gill of the glass eel (Anguilla anguilla). Int Rev Gesamten Hydrobiol 75(6):835–836CrossRefGoogle Scholar
  23. Goodyear KL, McNeill S (1999) Bioaccumulation of chemical contaminants by aquatic macro-invertebrates of different feeding guilds: a review. Sci Tot Environ 229:1–19Google Scholar
  24. Hagopian-Schlekat T, Chandler GT, Shaw TJ (2001) Acute toxicity of five sediment-associated metals, individually and in a mixture, to the estuarine meiobenthic harpacticoid copepod Amphiascus tenuiremis. Mar Environ Res 51:247–264CrossRefGoogle Scholar
  25. Hossain A, Aditya G (2013) Cadmium biosorption potential of shell dust of the fresh water invasive snail Physa acuta. J Environ Chem Engin 1:574–580CrossRefGoogle Scholar
  26. Kalantzi I, Papageorgiou N, Sevastou K, Black KD, Pergantis SA, Karakassis I (2014) Metals in benthic macrofauna and biogeochemical factors affecting their trophic transfer to wild fish around fish farm cages. Sci Tot Env 470–471:742–753Google Scholar
  27. Krevs A, Darginaviciene J, Gylyte B, Grigutyte R, Jurkoniene S, Karitonas R, Kucinskiene A, Pakalnis R, Sadauskas K, Vitkus R, Manusadzianas L (2013) Ecotoxicological effects evoked in hydrophytes by leachates of invasive Acer negundo and autochthonous Alnus glutinosa fallen off leaves during their microbial decomposition. Environ Pollut 173:75–84CrossRefGoogle Scholar
  28. Krzaklewski W, Pietrzykowski M, Wos B (2012) Survival and growth of alders [Alnus glutinosa (L.) Gaertn. and Alnus incana (L.) Moench] on fly ash technosols at different substrate improvement. Ecol Eng 49:35–40CrossRefGoogle Scholar
  29. Lorenc-Plucinska G, Walentynowicz M, Niewiadomska A (2013) Capabilities of alders (Alnus incana and A. glutinosa) to grow in metal-contaminated soil. Ecol Eng 58:214–227CrossRefGoogle Scholar
  30. Lussenhopp J (1992) Mechanisms of microarthropod-microbial interactions in soil. Adv Ecol Res 23:1–33CrossRefGoogle Scholar
  31. Marini G, Pinna M, Basset A, Mancinelli G (2013) Estimation of benthic macroinvertebrates taxonomic diversity: testing the role of sampling effort in a Mediterranean transitional water ecosystem. Transit Water Bull 7(2):28–40Google Scholar
  32. Mayes WM, Gozzard E, Potter HAB, Jarvis AP (2008) Quantifying the importance of diffuse minewater pollution in a historically heavily coal mined catchment. Environ Pollut 151(1):165–175CrossRefGoogle Scholar
  33. Medas D, Cidu R, De Giudici G, Podda F (2013) Geochemistry of rare earth elements in water and solid materials at abandoned mines in SW Sardinia (Italy). J Geochem Explor 133:149–159CrossRefGoogle Scholar
  34. Menéndez M, Carlucci D, Pinna M, Comin FA, Basset A (2003) Effect of nutrients on decomposition of Ruppia cirrhosa in a shallow coastal lagoon. Hydrobiologia 506–509:729–735CrossRefGoogle Scholar
  35. Petersen RC, Cummins KC (1974) Leaf processing in a woodland stream. Freshwater Biol 4:343–368CrossRefGoogle Scholar
  36. Pinna M, Basset A (2004) Summer drought disturbance on plant detritus decomposition processes in three River Tirso (Sardinia, Italy) sub-basins. Hydrobiologia 522:311–319CrossRefGoogle Scholar
  37. Pinna M, Sangiorgio F, Fonnesu A, Basset A (2003) Spatial variation of plant detritus processing in a Mediterranean river type: the case of River Tirso basin (Sardinia, Italy). J Environ Sci 15:227–240Google Scholar
  38. Pinna M, Fonnesu A, Sangiorgio F, Basset A (2004) Influence of the summer drought on spatial patterns of resource availability and detritus processing in Mediterranean stream sub-basins (Sardinia, Italy) Int Rev Hydrobiol 89(5–6):484–499Google Scholar
  39. Pinna M, Marini G, Rosati I, Neto JM, Patrício J, Marques JC, Basset A (2013) The usefulness of large body-size macroinvertebrates in the rapid ecological assessment of Mediterranean lagoons. Ecol Indic 29:48–61Google Scholar
  40. Pinna M, Marini G, Cristiano G, Mazzotta L, Vignini P, Cicolani B, Di Sabatino A (2016) Influence of aperiodic summer droughts on leaf litter breakdown and macroinvertebrate assemblages: testing the drying memory in a Central Apennines River (Aterno River, Italy). Hydrobiologia 782:111–126CrossRefGoogle Scholar
  41. RAS (2003) Piano regionale di gestione dei rifiuti, piano di bonifica siti inquinati. Allegato 5. Regione Autonoma della Sardegna, Cagliari. Document in Italian language.Google Scholar
  42. Sangiorgio F, Basset A, Pinna M, Sabetta L, Abbiati M, Ponti M, Minocci M, Orfanidis S, Nicolaidou A, Moncheva S, Trajanova A, Georgescu L, Dragan S, Beqiraj S, Koutsoubas D, Evagelopoulos A, Reizopoulou S (2008) Environmental factors affecting Phragmites australis litter decomposition in Mediterranean and Black Sea transitional waters. Aquat Conserv 18(1):S16–S26CrossRefGoogle Scholar
  43. Sangiorgio F, Quintino V, Rosati I, Rodrigues AM, Pinna M, Basset A (2014) Macrofauna in Mediterranean and Black Sea transitional aquatic ecosystems: a comparative study of the benthic populations sampled by box corer and leaf bags. Ecol Indic 38:159–169Google Scholar
  44. Santos MA, Hall A (1990) Influence of inorganic lead on the biochemical blood composition of the eel, Anguilla anguilla L. Ecotox Environ Safe 20:7–9Google Scholar
  45. Smolders AJP, Lock RAC, Van der Velde G, Medina Hoyos RI, Roelofs JGM (2003) Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America. Arch Environ Con Tox 44:314–323Google Scholar
  46. Suberkropp K, Klug MJ (1976) Fungi and bacteria and bacteria associated with leaves during processing in a woodland stream. Ecology 57:707–719CrossRefGoogle Scholar
  47. Tank JL, Rosi-Marshall EJ, Griffiths NA, Entrekin SA, Stephen ML (2010) A review of allochthonous organic matter dynamics and metabolism in streams. J North Am Benthol Soc 29(1):118–146CrossRefGoogle Scholar
  48. Underwood AJ (1994) On Beyond BACI: Sampling designs that might reliably detect environmental disturbances. Ecol Appl 4:4–15CrossRefGoogle Scholar
  49. Underwood AJ, Chapman MG (2003) Power, precaution, Type II error and sampling design in assessment of environmental impacts. J Exp Mar Biol Ecol 296:49–70CrossRefGoogle Scholar
  50. Varga I (2003) Structure and changes of macroinvertebrate community colonizing decomposing rhizome litter of common reed at Lake Festö/Neuriedler See (Hungary). Hydrobiologia 506–509:413–420CrossRefGoogle Scholar
  51. Vignes F, Fedele M, Pinna M, Mancinelli G, Basset A (2012) Variability of Lekanesphaera monodi metabolic rates with habitat trophic status. Acta Oecol 41:58–64CrossRefGoogle Scholar
  52. Wanty RB, Podda F, De Giudici G, Cidu R, Lattanzi P (2013) Zinc isotope and transition-element dynamics accompanying hydrozincite biomineralization in the Rio Naracauli, Sardinia, Italy. Chem Geol 337–338:1–10CrossRefGoogle Scholar
  53. Webster JR, Benfield EF (1986) Vascular plant breakdown in freshwater ecosystems. Annu Rev Ecol Syst 17:567–594CrossRefGoogle Scholar
  54. Xu M, Wang Z, Duan X, Pan B (2014) Effects of pollution on macroinvertebrates and water quality bio-assessment. Hydrobiologia 729:247–259CrossRefGoogle Scholar
  55. Zhang X, Yang L, Li Y, Li H, Wang W, Ye B (2012) Impacts of lead/zinc mining and smelting on the environment and human health in China. Environ Monit Assess 184(4):2261–2273CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Biological and Environmental Sciences and TechnologiesUniversity of SalentoLecceItaly
  2. 2.Bioscience Research Center srlOrbetelloItaly

Personalised recommendations