Advertisement

Mine Water and the Environment

, Volume 36, Issue 2, pp 163–179 | Cite as

The Fate of Base Metals in the Environment and Water Quality in the Mellegue Watershed, Northwest Tunisia

  • A. Mlayah
  • F. Lachaal
  • A. Chekirbane
  • S. Khadar
  • E. Ferreira da Silva
Technical Article

Abstract

The 130 Mm3-capacity Mellègue reservoir has a broad catchment area. Contaminants include sewage from cities, farm fertilizers, and metals released from mine tailings, all of which threaten Tunisia’s water supply. Forty surface water samples were collected from watercourses and 18 from the reservoir during the wet and dry seasons. To evaluate groundwater contamination, the Sarrat basin was considered as a case study, and well water was analysed. The total amounts of base metals and nutrients in the watercourses did not exceed international standards. Evaporites in broad Triassic outcrops and in tailings dissolve, and may fix lead as sulphates; however, sulphate and chloride can complex and increase the solubility of some metals. The nutrient and salt content were highest in the Rmel River, which receives sewage from el Kef. An opposing gradient of metals was observed in the reservoir water column: elements such as Zn, Pb, and Al were enriched upwards, while Mn, Fe, and Cr increased towards the sediment–water interface. The same behaviour was observed for NO3 and O2, due to metal release under reducing conditions in bottom waters, and dissolution of Fe and Mn colloids. Fertilizers and sewage may be responsible for the potentially hazardous level of nutrients in the groundwater.

Keywords

Pollution Nutrients Surface water Groundwater 

Das Verhalten von unedlen Metallen in der Umwelt und die Wasserqualität im Mellegue-Einzugsgebiet, Nordwest Tunesien

Zusammenfassung

Der 130 Millionen m³ große Mellègue-Speicher hat ein weites Einzugsgebiet. Schadstoffe aus urbanen Abwässern, Düngemitteln und Metallen aus Tailings sind ein Bedrohung für die Wasserversorgung in Tunesien. Während der Trocken- und Regenzeit wurden vierzig Oberflächenwasserproben aus Gewässern und achtzehn aus dem Speicher entnommen. Am Fallbeispiel des Sarrat-Beckens wurden zudem Brunnenwasserproben analysiert, um Grundwasserbelastungen zu untersuchen. Die Gesamtgehalte an unedlen Metallen und Nährstoffen im Oberflächengewässer liegen nicht über internationalen Standards. Durch lösliche Evaporite, welche in den weiten Ausstrichbereichen triassischer Gesteine und in Tailings vorkommen, kann Blei sulfatisch gebunden werden. Andererseits besteht die Möglichkeit, dass Sulfat- und Chloridkomplexe die Löslichkeit einiger Metalle beeinflussen. Die Nährstoff- und Salzgehalte waren im Rmel-River, welchem Abwässer aus El Kef zufließen, am höchsten. Ein umgekehrter Metall-Konzentrationsgradient wurde in der Wassersäule des Wasserspeichers festgestellt. Zink, Blei und Aluminium waren im oberen Abschnitt angereichert, wohingegen Mangan, Eisen und Chrom in Richtung der Sediment-Wasser Grenze zunahmen. Das gleiche Verhalten wurde für Nitrat und Sauerstoff aufgrund von Metallfreisetzungen unter reduzierenden Bedingungen sowie der Lösung von Eisen- und Mangankolloiden im bodennahen Wasser beobachtet. Düngemittel und Abwässer sind vermutlich verantwortlich für die sehr hohen Nähstoffgehalte im Grundwasser.

La influencia de los metales base en el ambiente y la calidad del agua en la cuenca Mellegue, Noroeste de Túnez

Resumen

El reservorio de 130 Mm3 de capacidad de Mellègue tiene una amplia cuenca. Los contaminantes incluyen las aguas residuales provenientes de distintas ciudades, fertilizantes de granjas y metales liberados desde colas de mina, y amenazan el suministro de agua de Túnez. Cuarenta muestras de agua superficial fueron colectadas desde cursos de agua y 18 desde el reservorio durante las estaciones secas y húmedas. Para evaluar la contaminación del agua subterránea, se consideró la cuenca Sarrat como un caso de estudio y se analizó el agua potable. Las cantidades totales de metales base y nutrientes en los cursos de agua no excedió los estándares internacionales. Las evaporitas en los grandes afloramientos triásicos y en las colas se disuelven y pueden fijar plomo como sulfatos; sin embargo, sulfato y cloruro pueden complejar e incrementar la solubilidad de algunos metales. Los contenidos en nutrientes y sales fueron máximos en el río Rmel que recibe aguas residuales desde el Kef. Un gradiente opuesto de metales fue observado en el agua del reservorio: elementos como Zn, Pb y Al se enriquecieron hacia la superficie mientras Mn, Fe y Cr se incrementaron hacia la interface sedimento-agua. El mismo comportamiento fue observado para NO3- y O2, debido a la liberación de metales bajo condiciones reductores en las aguas del fondo y la disolución de coloides de Fe y Mn. Los fertilizantes y las aguas residuales podrían ser los responsables por el nivel potencialmente peligroso de nutrientes en el agua subterránea.

突尼斯西北部Mellegue流域水样及环境碱金属特征

突尼斯西北部Mellegue流域水样及环境碱金属特征

Mellegue水库汇水面积大,库容量达130×106m3。水体污染物主要源自城市废水、农用化肥、尾矿释放等,它们对突尼斯供水构成巨大威胁。分别在干、枯季从汇水河道取地表水样40个和水库水样18个;同时,为评价区域地下水污染状况,分析了Sarrat盆地泉水水样特征。河道水样的碱金属和养分含量未超国际水质标准。研究区内大面积三叠纪蒸发盐岩露头和尾矿露头发生溶解作用,铅被固定为硫酸盐,硫酸盐和氯化物混合作用进一步促进某些金属离子溶解。Rmel河因接受el Kef城市废水而养分和盐含量最高。水库水样呈现相反梯度变化:锌、铅和铝向上富集,而锰、铁和镉向底部水-岩界面富集。底水还原环境金属离子释放和铁锰胶体溶解作用使NO3-和O2含量具有相同变化规律。农用化肥和城市废水污染是地下水呈养分超标趋势的主要原因.

Supplementary material

10230_2017_430_MOESM1_ESM.pdf (64 kb)
Map showing piezometric levels (m) and the location of sample wells in Kalaa Kasba groundwater (PDF 64 KB)
10230_2017_430_MOESM2_ESM.pdf (69 kb)
Map of the electric conductivity (EC) values in kalaa Khasba groundwater (µS cm-1) (PDF 69 KB)
10230_2017_430_MOESM3_ESM.docx (25 kb)
Supplementary material 3 (DOCX 24 KB)

References

  1. Alloway BJ (1995) Base metals in soils. Blackie Academic and Professional, LondonCrossRefGoogle Scholar
  2. Appelo CA, Postma D (1999) Geochemistry, groundwater and pollution. AA Balkema, RotterdamGoogle Scholar
  3. Baccar L (1988) Hydrogéologie du bassin versant d’oued el Melah (rive gauche du Mellègue). DEA, FST (in French) Google Scholar
  4. Ben Hamza C (1994) Bilan hydrologique, sédimentologique et géochimique d’un versant en zone semi-aride: LaMejerda (Tunisie du Nord). Impact sur l’environnement. PhD thesis, Univ Pierre (in French) Google Scholar
  5. Bhattacharya P, Sracek O, Eldvall B, Asklund R, Barmen G, Jacks G, Koku J, Gustafsson JE, Singh N, Balfors BB (2012) Hydrogeochemical study on the contamination of water resources in a part of Tarkwa mining area, Western Ghana. J Afr Earth Sci 66–67:72–84CrossRefGoogle Scholar
  6. Brigatti MF, Lugli C, Poppi L (2000) Kinetics of heavy metal removal and recovery in sepiolite. Appl Clay Sci 16:45–57CrossRefGoogle Scholar
  7. Buckby T, Black S, Coleman ML, Hodson ME (2003) Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, southwest Spain. Miner Mag 67:263–278CrossRefGoogle Scholar
  8. Burollet PF (1956) Contribution à l’étude stratigraphique de la Tunisie centrale. Annales Mines et Géologie Tunis, vol 18 (in French) Google Scholar
  9. Candeias C, Ávila PF, da Silva EF, Ferreira A, Salgueiro AR, Teixeira JP (2013) Acid mine drainage from the Panasqueira mine and its influence on Zêzere river (Central Portugal). J Afr Earth Sci 99(2):705–712Google Scholar
  10. Carlson MA, Lohse KA, McIntosh JC, McLain JE (2011) Impacts of urbanization on groundwater quality and recharge in a semi-arid alluvial basin. J Hydrol 409:196–211CrossRefGoogle Scholar
  11. Casiot C, Morin G, Juillot F, Bruneel O, Personné JC, Leblanc M, Duquesne K, Bonnefoy V, Elbaz-Poulichet F (2003) Bacterial immobilization and oxidation of arsenic in acid mine drainage (Carnoules Creek, France). Water Res 37(12):2929–2936CrossRefGoogle Scholar
  12. Cheung KC, Poon HHT, Lan CY, Wong MH (2003) Assessment of metal and nutrient concentrations in river water and sediment collected from the cities in the Pearl River Delta, south China. Chemosphere 52:1431–1440CrossRefGoogle Scholar
  13. Chikhaoui M, Turki MM, Maamouri AL (1994) Evolution géodynamique de la ride diapirique de Zag et Tir (Kef, Tunisie nord occidentale) en relation avec une structurogenèse précoce d’âge crétacé inférieur. Notes Serv Géol de Tunisie 60:87–97 (in French) Google Scholar
  14. Cicchella D, De Vivo B, Lima A (2005) Background and baseline concentration values of elements harmful to human health in the volcanic soils of the metropolitan and provincial areas of Napoli (Italy). Geochem-Explor Env A 5(1):29–40CrossRefGoogle Scholar
  15. Costa JL, Massone H, Martinez D, Suero EE, Vidal CM, Bedmar F (2002) Nitrate contamination of a rural aquifer and accumulation in the unsaturated zone. Agric Water Manage 57:33–47CrossRefGoogle Scholar
  16. Da Silva FE, Mlayah A, Gomes C, Noronha F, Charef A, Sequeira C, Esteves V, Marques AR (2010) Heavy elements in the phosphorite from Kalaat Khasba mine (North-western Tunisia): potential implications on the environment and human health. J Hazard Mater 182(1–3):232–245CrossRefGoogle Scholar
  17. de Livera J, McLaughlin MJ, Hettiarachchi GM, Kirby JK, Beak DG (2011) Cadmium solubility in paddy soils: effects of soil oxidation, metal sulfides and competitive ions. Sci Total Environ 409:1489–1497CrossRefGoogle Scholar
  18. European Union (1998) Council Directive 98/83/EC of 3 Nov 1998 on the quality of water intended or human consumption. http://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:31998L0083&from=EN. Accessed 05 Oct 2015
  19. FAO (2015) Country fact sheet Tunisia. http://www.fao.org/nr/water/aquastat/data/cf/readPdf.html?f=TUN-CF_eng.pdf. Accessed 22 Apr 2015
  20. Gomo M, Vermeulen D (2013) Investigation of hydrogeochemical processes in groundwater resources located in the vicinity of a mine process water dam. J Afr Earth Sci 86:119–128CrossRefGoogle Scholar
  21. Gottis Ch, Sainfeld P (1956) Carte géologique de Ghardimaou au1/50.000. Service Géologique National de Tunisie, Tunisia (in French) Google Scholar
  22. Grande JA, Santisteban M, de la Torre ML, Valente T, Pérez-Ostale E (2013) Characterisation of AMD pollution in the reservoirs of the Iberian Pyrite Belt. Mine Water Environ 32:321–330CrossRefGoogle Scholar
  23. Guedria A, Trichet J, Wilhelm E (1989) Behaviour of lead and zinc in calcrete-bearing soils around Bou Grine, Tunisia and its application to geochemical exploration. Proc, 12th International Geochemical Exploration Symp and the 4th Symp on Methods of Geochemical Prospecting. J Geochem Explor 32(1–3):117–132CrossRefGoogle Scholar
  24. Halim MA, Majumder RK, Nessa SA, Hiroshiro Y, Uddin MJ, Shimada J, Jinno K (2009) Hydrogeochemistry and arsenic contamination of groundwater in the Ganges Delta Plain, Bangladesh. J Hazard Mater 164:1335–1345CrossRefGoogle Scholar
  25. Hamed Y, Dhahri F (2013) Hydro-geochemical and isotopic composition of groundwater, with emphasis on sources of salinity, in the aquifer system in northwestern Tunisia. J Afr Earth Sci 83:10–24CrossRefGoogle Scholar
  26. Hatira N, Perthuisot V, Rouvier H (1990) Les minéraux à Cu, Sb, Ag Hg des minerais de Pb - Zn de Sakiet Koucha (diapir de Sakiet Sidi Youssef, Tunisie septentrionale). Miner Deposita 25:112–117 [French]CrossRefGoogle Scholar
  27. Hill CA (1990) Sulfuric acid speleogenesis of Carlsbad Cavern and its relationship to hydrocarbons, Delaware Basin, New Mexico and Texas. Am Assoc Petr Geol B 74:1685–1694Google Scholar
  28. Hudson-Edwards KA, Schell C, Macklin MG (1999) Mineralogy and geochemistry of alluvium contaminates by metal mining in the Rio Tinto area, southwest Spain. Appl Gechem 14:1015–1030CrossRefGoogle Scholar
  29. Huelin SR, Longerich HP, Wilton DHC, Fryer BJ (2004) The determination of trace elements in Fe–Mn oxide coatings on pebbles using LA-ICP-MS. J Geoch Explor 91(1–3):110–124Google Scholar
  30. Klavins M, Briede A, Rodinov V, Kokorite I, Parele E, Klavina I (2000) Base metals in rivers of Latvia. Sci Total Environ 262:175–183CrossRefGoogle Scholar
  31. Komarek M, Vanek A, Chrastny V, Szakova J, Kubova K, Drahota P, Balik J (2009) Retention of copper originating from different fungicides in contrasting soil types. J Hazard Mater 166:1395–1402CrossRefGoogle Scholar
  32. Krapac IG, Dey WS, Roy WR, Smyth CA, Sargent SL, Steele JD (2002) Impacts of swine manure pits on groundwater quality. Environ Pollut 120:475–492CrossRefGoogle Scholar
  33. Lee M, Paik IS, Kim I, Kang H, Lee S (2007) Remediation of heavy metal contaminated groundwater originated from abandoned mine using lime and calcium carbonate. J Hazard Mater 144:208–214CrossRefGoogle Scholar
  34. Macklin MG, Hudson-Edwards KA, Jamieson HE, Brewer P, Coulthard TJ, Howard AJ, Remenda VH (1999) Physical stability and rehabilitation of sustainable aquatic and riparian ecosystems in the Rio Guadiamar, Spain, following the Aznalcóllar mine tailings dam failure. In: Rubio F (Ed), Proc, International Congress, International Mine Water Assoc, pp 271–278Google Scholar
  35. Masrouhi A, Bellier O, Koyi H, Vila J-M, Ghanmi M (2013) The evolution of the Lansarine-Baouala salt canopy in the North African cretaceous passive margin in Tunisia. Geol Mag 150(5):835–861CrossRefGoogle Scholar
  36. Mlayah A (2010) Géochimie des métaux lourds dans les eaux et sédiments du bassin de l’oued Mellègue (Centre-Ouest de la Tunisie). PhD thesis, Univ de Carthage, Tunisia (in French) Google Scholar
  37. Mlayah A, Charef A, da Silva EF, Noronha F, Ben Hamza Ch (2007a) As, Cu, Pb and Zn contamination of stream sediments and their distribution in different size fractions (Jerissa mine – NW Tunísia). In: Proc, VI Congesso lberico de Geoquimica, pp 329–332Google Scholar
  38. Mlayah A, da Silva EF, Charef A, Noronha F, Ben Hamza Ch (2007b) Influence of dissolution phenomena on the contamination of surface water: case of Mellègue River. In: Proc, Meda Water International Conf Sustainable Water, pp 521–525Google Scholar
  39. Mlayah A, da Silva EF, Rocha F, Ben Hamza Ch, Charef A, Noronha F (2009) The Oued Mellègue: mining activity, stream sediments and dispersion of base metals in natural environments, north-western Tunisia. J Geochem Explor 102:27–36CrossRefGoogle Scholar
  40. Mlayah A, Da Silva EF, Hatira N, Jellali S, Lachaal F, Charef A, Noronha F, Ben Hamza Ch (2011) Bassin d’oued Serrat: terrils et rejets domestiques, reconnaissance des métaux lourds et polluants, impact sur les eaux souterraines (Nord-ouest de la Tunisie). Rev Sci Eau 24(2):159–175Google Scholar
  41. Mlayah A, da Silva EF, Lachaal F, Khadhar S, Charef A, Noronha F (2013) Effet auto-épurateur de la lithologie des affleurements géologiques dans un climat semi-aride: cas du bassin versant de l’Oued Mellègue (Nord-ouest de la Tunisie). Hydrol Sci J 58(3):686–705CrossRefGoogle Scholar
  42. Mlayah A, Yoshida M, Charef A, Ferreira da Silva E, Noronha F, Patinha C (2005) Impact des rejets miniers et domestiques sur la qualité des sédiments et des eaux de l’oued Mellègue (NW de la Tunisie): diagnostic des métaux lourds. In: Proc, VIII Congresso de Geoquimica Actas, vol 2, pp 621–625 (in French) Google Scholar
  43. Mueller DK, Helsel DR (1996) Nutrients in the nation’s waters—too much of a good thing. USGS Circular 1136, Denver, CO, USAGoogle Scholar
  44. Navarro MC, Pérez-Sirvent C, Martinez-Sanchez, Vidal J (2007) Abandoned mine sites as a source of contamination by base metals: a case study in semi-arid zone. J Chem Explor 96:183–193Google Scholar
  45. Nieto JM, Capitan MA, Saez R, Almodovar GR (2003) Beudantite a natural sink for As and Pb in sulphide oxidation processes. TI Min Metall B 6:112–293Google Scholar
  46. Olias M, Nieto JM, Sarmient AM, Ceron JC, Canovas CR (2004) Seasonal water quality variations in river affected by acid mine drainage: the Odiel river (Southwest Spain). Sci Total Environ 333:267–281CrossRefGoogle Scholar
  47. Olias M, Ceron JC, Moral F, Ruiz F (2006) Water quality of the Guadiamar River after the Aznalcollar spill (SW Spain). Chemosphere 62:213–225CrossRefGoogle Scholar
  48. Peña-Haro S, Llopis-Alber C, Pulido-Velazquez M, Pulido-Velazquez D (2010) Fertilizer standards for controlling groundwater nitrate pollution from agriculture: El Salobral-Los Llanos case study, Spain. J Hydrol 392:174–187CrossRefGoogle Scholar
  49. Peng CY, Ferguson y JF, Korshin GV (2013) Effects of chloride, sulfate and natural organic matter (NOM) on the accumulation and release of trace-level inorganic contaminants from corroding iron. Water Res 47:5257–5269CrossRefGoogle Scholar
  50. Perthuisot V (1978) Dynamique et pétrogenèse des extrusions triasiques en Tunisie septentrionale. PhD Thesis, Ecole Normale Supérieure de Paris (in French) Google Scholar
  51. Sagemann J, Skowronek F, Dahmk A, Schuz HD (1994) Saisonale variation des nitratabbaus in intertidalen sedimenten des «Weser-Ästuars». In: Mtschullat J, Müller G (eds) Geowissenchftiche Umwelforschung. Springer, BerlinGoogle Scholar
  52. Sahoo PK, Tripathy S, Panigrahi MK, Equeenuddin Sk Md (2012) Mineralogy of Fe precipitates and their role in metal retention from an acid mine drainage site in India. Mine Water Environ 31:344–352CrossRefGoogle Scholar
  53. Segura R, Arancibia V, Zunig MC, Pasten P (2006) Distribution of copper, zinc, lead and cadmium concentrations in stream sediments from the Mapocho River in Santiago, Chile. J Geochem Explor 91:71–80CrossRefGoogle Scholar
  54. Slim-Shimi N (1992) Minéralogie et paragenèses des gîtes polymétalliques de la zone des nappes en Tunisie. Conditions géochimiques de dépôt et implications génétiques. PhD thesis, Univ de Tunis II, Tunisia (in French) Google Scholar
  55. Slim-Shimi N, Moëlo Y, Tlig S, Levy C (1996) Sulfide geochemistry of Chouichia and Ain el Bey copper deposits in north-western Tunisia. Miner Deposita 31:188–200CrossRefGoogle Scholar
  56. Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568CrossRefGoogle Scholar
  57. Song Y, Müller G (1999) Sediment-water interaction in anoxic freshwater sediments. Mobility of base metals and nutrients. Springer, Berlin-HeidelbergGoogle Scholar
  58. Sternick KH (1991) Annuaires limnologiques relatifs à la trophie et l’eutrophisation du barrage Sidi Salem. Ministère de l’Agriculture, Tunisie, Direction générale des études des travaux hydrauliques-Deutsche Gesellschaft für Technische Zusammenarbeit (GTZ). Projet «protection et exploitation du barrage Sidi Salem», Tunis (in French) Google Scholar
  59. Thorez J (1976) Practical identification of clay minerals: a handbook for teachers and students in clay mineralogy. Dison, Lelotte, BelgiumGoogle Scholar
  60. Tlig S, Sassi A, Belayouni H, Michel D (1987) Uranium, thorium, zirconium, hafnium and rare earth distribution in sedimentary phosphate grains. Chem Geol 62(3–4):209–221CrossRefGoogle Scholar
  61. Trabelsi R, Zairi M, Ben Dhia H (2007) Groundwater salinisation of the Sfax superficial aquifer. Hydrogeol J 15:1341–1355CrossRefGoogle Scholar
  62. Ure AM (1995) Methods of analysis for base metals in soils. In: Alloway BJ (ed) Base metals in soils. Blackie Academic & Professional, London, pp 58–102CrossRefGoogle Scholar
  63. Vizintin G, Souvent P, Veselic M, Cencur Curk B (2009) Determination of urban groundwater pollution in alluvial aquifer using linked process models considering urban water cycle. J Hydrol 377:261–273CrossRefGoogle Scholar
  64. WHO (2011) Guidelines for drinking water quality recommendations.4th Edit, World Health Org, Geneva, Switzerland. http://apps.who.int/iris/bitstream/10665/44584/1/9789241548151_eng.pdf. Accessed 03 Mar 2016
  65. Zhang H, Feng X, Larssen T (2014) Selenium speciation, distribution, and transport in a river catchment affected by mercury mining and smelting in Wanshan, China. Appl Geochem 40:1–10CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • A. Mlayah
    • 1
  • F. Lachaal
    • 1
  • A. Chekirbane
    • 1
  • S. Khadar
    • 1
  • E. Ferreira da Silva
    • 2
  1. 1.Centre of Water Researches and TechnologiesTechnopole Borj CedriaHammam-LifTunisia
  2. 2.GeoBioTec-GeoBiosciences, Geotechnology and Geoengineering Research CenterUniversidade de AveiroAveiroPortugal

Personalised recommendations