Mine Water and the Environment

, Volume 36, Issue 2, pp 180–192 | Cite as

Potential Release of Metals from Tailings and Soil at the Hamekasi Iron Mine, Hamadan, Iran

Technical Article
  • 151 Downloads

Abstract

This study focused on acid neutralization reactions and the effects of water composition on the release and mobility of metals from mine tailings. The aims of this study were to: investigate leaching of metals from neutral mine tailings, determine the factors responsible for metal leaching, and investigate potential metal filtering by the soil. Tailings and soil samples were collected from an iron mine and analyzed. Equilibrium thermodynamic data and metal fractionation were then used to predict precipitation/dissolution of minerals and ion adsorption/desorption. Three column experiments were designed. The first column was filled with tailings, while the second column contained tailings above a layer of soil; both were leached with distilled water as rainfall. The third column was packed with soil and percolated with synthetic groundwater. The results indicated that iron (Fe) and zinc (Zn) mobility are mainly controlled by precipitation–dissolution mechanisms, while sorption onto oxides and carbonates limit the mobility of copper (Cu) and nickel (Ni). Cadmium (Cd) and manganese (Mn) mobility are affected by both mechanisms. Water discharging from column 3 (soil washed with groundwater) contained high concentrations of dissolved metals, indicating that water composition played an important role in metal mobility. Buffering minerals like carbonates and hornblende, chlorite, and albite decreased acid generation.

Keywords

Water composition Acid neutralization potential XRD analysis PHREEQC Leaching 

抽象

论文研究了酸中和反应及水化学组分对尾矿金属离子释放与迁移规律的影响,旨在研究中性尾矿的金属离子滤出特征,确定影响金属离子滤出的主要因素,分析土壤的金属离子淋滤作用。尾矿及土样取自伊朗Hamekasi铁矿。利用热力学平衡及金属形态分析的方法预测金属离子的沉淀/溶解及吸附/解析过程。研究由三个柱试验组成。第一个试验柱充填尾矿,第二个试验柱充填尾矿后再覆盖一层土样,两个试验柱都用蒸馏水模拟降水淋滤。第三个试验柱充填土样并用人工合成地下水淋滤。试验结果表明,铁和锌的迁移主要受沉淀/溶解过程控制,氧化物和碳酸盐类矿物的吸附限制了铜和镍的迁移,镉和锰的迁移同时受两种机理影响。第三个试验柱淋出液(用地下水淋滤土壤)的重金属离子浓度较高,说明水样组分在金属迁移过程中起重要作用。碳酸盐、角闪石、绿泥石、钠长石等缓冲矿物减少了滤出液酸的生成。.

Resumen

Este estudio está enfocado en las reacciones de neutralización y los efectos de la composición del agua sobre la liberación y movilidad de metales desde las colas de mineral. Los objetivos de este estudio fueron: investigar la lixiviación de metales desde colas de mineral, determinar los factores responsables de lixiviación de metales e investigar la potencial filtración de metales al suelo. Las muestras de suelo y colas fueron tomadas de la mina y posteriormente analizadas. Los datos termodinámicos y el fraccionamiento de metales fueron usados para predecir la disolución/precipitación de minerales y la adsorción/desorción de iones. Se diseñaron experimentos con tres columnas. La primera columna se llenó con colas mientras que la segunda contenía colas sobre una capa de suelo; ambas fueron lixiviadas con agua destilada como si fuera agua de lluvia. La tercera columna contenía suelo y fue percolada con agua subterránea sintética. Los resultados indicaron que la movilidad de Fe y Zn es principalmente controlada por los mecanismos de disolución-precipitación, mientras que la sorción sobre óxidos y carbonatos limita la movilidad de Cu y Ni. La movilidad de Cd y Mn es afectada por ambos mecanismos. El agua de descarga de la columna 3 contenía altas concentraciones de metales disueltos indicando que la composición del agua juega un importante rol en la movilidad de los metales. Minerales buffers como carbonatos y hornblenda, clorita y albita disminuyeron la generación de ácido.

Notes

Acknowledgements

The authors are grateful to the editors and anonymous referees for their critical review, perceptive comments, and editing of the manuscript.

Supplementary material

10230_2016_425_MOESM1_ESM.docx (30 kb)
Supplementary material (DOCX 30 KB)
10230_2016_425_MOESM2_ESM.pdf (138 kb)
Supplementary Figure 1 XRD analysis of fresh tailing (Ch chlorite; a Albite; q Quartz; H Hornblende and Ca Calcite) (PDF 137 KB)
10230_2016_425_MOESM3_ESM.pdf (133 kb)
Supplementary Figure 2 XRD analysis of leached tailing (PDF 132 KB)
10230_2016_425_MOESM4_ESM.pdf (133 kb)
Supplementary Figure 3 XRD analysis of original soil (PDF 132 KB)
10230_2016_425_MOESM5_ESM.pdf (143 kb)
Supplementary Figure 4 XRD analysis of leached soil (Column 2) (PDF 143 KB)
10230_2016_425_MOESM6_ESM.pdf (208 kb)
Supplementary Figure 5 XRD analysis of leached soil (Column 3) (PDF 208 KB)

References

  1. Alpers CN, Blowes DW, Nordstrom DK, Jambor JL (1994) Secondary minerals and acid mine-water chemistry. In: Jambor JL, Blowes DW (eds) Environmental geochemistry of sulphide mine-waste, vol 22. Mineralogical Association of Canada, Waterloo, pp 245–270Google Scholar
  2. Amacher MC, Kotuby-Amacher J, Selim HM, Iskandar IK (1986) Retention and release of metals by soils: evaluation of several models. Geoderma 38:131–154CrossRefGoogle Scholar
  3. American Society for Testing and Materials (1996) ASTM designation: D 5744 - 96—Standard test method for accelerated weathering of solid materials using a modified humidity cell. ASTM, West ConshohockenGoogle Scholar
  4. Bacon JR, Davidson CM (2008) Is there a future for sequential chemical extraction? Analyst 133:25–46CrossRefGoogle Scholar
  5. Berner RA (1978) Rate control of mineral dissolution under earth surface conditions. Am J Sci 278:1235–1252CrossRefGoogle Scholar
  6. Bigham JM, Schwertmann U, Traina SJ, Winland RL, Wolf M (1996) Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochim Cosmochim Acta 60:2111–2121CrossRefGoogle Scholar
  7. Blowes D, Jambor J (1990) The pore-water geochemistry and the mineralogy of the vadose zone of sulphide tailings, Waite Amulet, Quebec, Canada. Appl Geochem 5:327–346CrossRefGoogle Scholar
  8. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2003) The geochemistry of acid mine drainage. In: Lollar BS (ed) Treatise on geochemistry, vol 9. Elsevier, New York, pp 149–204Google Scholar
  9. Chlopecka A, Adriano DC (1996) Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc. Environ Sci Technol 30:3294–3303CrossRefGoogle Scholar
  10. Christensen TH (1984) Cadmium soil sorption at low concentrations, II: reversibility, effect of changes in solute composition, and effect of soil aging. Water Air Soil Pollut 21:115–125CrossRefGoogle Scholar
  11. Conesa HM, García G, Faz Á, Arnaldos R (2007) Dynamics of metal tolerant plant communities’ development in mine tailings from the Cartagena-La Unión Mining District (SE Spain) and their interest for further revegetation purposes. Chemosphere 68:1180–1185CrossRefGoogle Scholar
  12. Davis JA, Fuller CC, Cook AD (1987) A model for trace metal sorption processes at the calcite surface: adsorption of Cd2+ and subsequent solid solution formation. Geochimica et Cosmochimica Acta 51(6):1477–1490CrossRefGoogle Scholar
  13. De Matos AT, Fontes MPF, Da Costa LM, Martinez MA (2001) Mobility of heavy metals as related to soil chemical and mineralogical characteristics of Brazilian soils. Environ Pollut 111:429–435CrossRefGoogle Scholar
  14. Doepker R, Drake P (1991) Laboratory study of submerged metal-mine tailings 1: Effect of solid–liquid contact time and aeration on contaminant concentrations. Mine Water Environ 10:29–41Google Scholar
  15. Doepker R, O’Connor W (1991) Column leach study II: heavy metal dissolution characteristics from selected lead–zinc mine tailings. Mine Water Environ 10:73–92Google Scholar
  16. Dold B, Fontbote L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55CrossRefGoogle Scholar
  17. El Adnani M, Plante B, Benzaazoua M, Hakkou R, Bouzahzah H (2015) Tailings weathering and arsenic mobility at the abandoned Zgounder silver mine, Morocco. Mine Water Environ. doi: 10.1007/s10230-015-0370-4 Google Scholar
  18. EPA (US Environmental Protection Agency) (2007) Monitored natural attenuation of inorganic contaminants in groundwater. EPA/600/R-07/140, vol 2, US EPA ORD, AdaGoogle Scholar
  19. Flores AN, Sola FM (2010) Evaluation of metal attenuation from mine tailings in SE Spain (Sierra Almagrera): a soil-leaching column study. Mine Water Environ 29:53–67CrossRefGoogle Scholar
  20. Fonseca AFD, Carires EF, Barth G (2010) Extraction methods and availability of micronutrients for wheat under a no-till system with a surface application of lime. Sci Agric 67:60–70CrossRefGoogle Scholar
  21. Gunsinger MR, Ptacek CJ, Blowes DW, Jambor JL, Moncur MC (2006) Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailings impoundment. Appl Geochem 21:1301–1321CrossRefGoogle Scholar
  22. Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned Kettara Mine (Morocco): 2. mine waste geochemical behavior. Mine Water Environ 27:160–170CrossRefGoogle Scholar
  23. Hall GEM, Vaive JE, Beer R, Hoashi M (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. J Geochem Explor 56:59–78CrossRefGoogle Scholar
  24. Harter RD (1983) Effect of soil pH on adsorption of lead, copper, zinc and nickel. Soil Sci Soc Am J 47:47–51CrossRefGoogle Scholar
  25. Heikkinen PM, Räisänen ML (2008) Mineralogical and geochemical alteration of Hiturasulphide mine tailings with emphasis on nickel mobility and retention. J Geochem Explor 97:1–20CrossRefGoogle Scholar
  26. Heikkinen PM, Räisänen ML (2009) Trace metal and As solid-phase speciation in sulphide mine tailings—indicators of spatial distribution of sulphide oxidation in active tailings impoundments. Appl Geochem 24:1224–1237CrossRefGoogle Scholar
  27. Heikkinen PM, Räisänen ML, Johnson RH (2009) Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage versus neutral mine drainage. Mine Water Environ 28:30–49CrossRefGoogle Scholar
  28. Hickey MG, Kittrick JA (1984) Chemical partitioning of cadmium, copper, nickel and zinc in soils and sediments containing high levels of heavy metals. J Environ Qual 3:372–376CrossRefGoogle Scholar
  29. Ho HH, Swennen R, Cappuyns V, Vassilieva E, Van Gerven T, Tran TV (2012) Potential release of selected trace elements (As, Cd, Cu, Mn, Pb and Zn) from sediments in Cam River-mouth (Vietnam) under influence of pH and oxidation. Sci Total Environ 435–436:487–498CrossRefGoogle Scholar
  30. Hudson-Edwards K, Macklin M, Taylor M (1997) Historic metal mining inputs to Tees river sediment. Sci Total Environ 194:437–445CrossRefGoogle Scholar
  31. Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulfide mineral oxidation. Rev Miner Geochem 40:303–350CrossRefGoogle Scholar
  32. Jurjovec J, Ptacek CJ, Blowes DW (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim Cosmochim Acta 66:1511–1523CrossRefGoogle Scholar
  33. Jurjovec J, Blowes DW, Ptacek CJ, Mayer KU (2004) Multicomponent reactive transport modeling of acid neutralization reactions in mine tailings. Water Resour Res. doi: 10.1029/2003WR002233 Google Scholar
  34. Kim HJ, Kim Y, Choo CO (2014) The effect of mineralogy of the mobility of heavy metals in mine tailing: a case study in the Samsanjeil mine, Korea. Environ Earth Sci 71:3429–3441CrossRefGoogle Scholar
  35. Kirby CS, Cravotta CA (2005) Net alkalinity and net acidity 2: practical considerations. Appl Geochem 20:1941–1964CrossRefGoogle Scholar
  36. Korte NE, Skopp J, Fuller WH, Niebla EE, Alesii BA (1976) Trace element movement in soils: influence of soil physical and chemical properties. Soil Sci 122:350–359CrossRefGoogle Scholar
  37. Kossoff D, Hudson-Edwards KA, Dubbin WE, Alfredsson MA (2011) Incongruent weathering of Cd and Zn from mine tailings: a column leaching study. Chem Geol 281:52–71CrossRefGoogle Scholar
  38. Kossoff D, Hudson-Edwards KA, Dubbin WE, Alfredsson MA (2012) Major and trace metal mobility during weathering of mine tailings: implications for floodplain soils. Appl Geochem 27:562–576CrossRefGoogle Scholar
  39. Krami LK, Amiri F, Sefiyanian A, Shariff ARBM, Tabatabaie T, Pradhan B (2013) Spatial patterns of heavy metals in soil under different geological structures and land uses for assessing metal enrichments. Environ Monit Assess 185:9871–9888CrossRefGoogle Scholar
  40. Lapakko KA (1988) Prediction of acid mine drainage from Duluth Complex mining wastes in northeastern Minnesota. In: Proceedings, mine drainage and surface mine reclamation conference. U.S. Bureau of Mines, pp 180–190Google Scholar
  41. Lapakko KA (2003) Developments in humidity cell tests and their application. In: Jambor JL, Blowes DW, Ritchie AIM (eds) Environmental aspects of mine wastes. Minerals Association of Canada, Ottawa, pp 147–164Google Scholar
  42. Li MG, Bernier LR (1999) Contributions of carbonates and silicates to neutralization observed in laboratory tests and their field implications. In: Goldsack D, Belzile N, Yearwood P, Hall G (eds) Proceedings, Sudbury 99, mining and the environment II, Sudbury, pp 59–68Google Scholar
  43. Lu L, Wang R, Chen F, Xue J, Zhang P, Lu J (2005) Element mobility during pyrite weathering: implications for acid and and pollution at mining-impacted sites. Environ Geol 49:82–89CrossRefGoogle Scholar
  44. Maher K (2010) The dependence of chemical weathering rates on fluid residence time. Earth Planet Sci Lett 294:101–110CrossRefGoogle Scholar
  45. McBride MB (1989) Reactions controlling heavy metal solubility in soils. In: Stewart BA (ed) Advances in soil science. Springer, New York, pp 1–56CrossRefGoogle Scholar
  46. McCarty DK, Moore JN, Marcus WA (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparison of selective extractions. Appl Geochem 13:165–176CrossRefGoogle Scholar
  47. Morin KA (1983) Prediction of subsurface contaminant transport in acidic seepage from uranium tailings impoundments. PhD Dissertation, University of WaterlooGoogle Scholar
  48. Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG Publishing, VancouverGoogle Scholar
  49. Morin G, Ostergren JD, Juillot F, Ildefonse P, Calas G, Brown GE (1999) XAFS determination of the chemical form of lead in smelter-contaminated soils and mine tailings; importance of adsorption processes. Am Miner 84:420–434CrossRefGoogle Scholar
  50. Naidu R, Kookana RS, Sumner ME, Harter RD, Tiller KG (1997) Cadmium sorption and transport in variable charge soils: a review. J Environ Qual 26:602–617CrossRefGoogle Scholar
  51. Nelson DW, Sommers LE, Sparks DL, Page AL, Helmke PA, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME (1996) Total carbon, organic carbon, and organic matter. Methods Soil Anal. doi: 10.2136/sssabookser5.3.c34 Google Scholar
  52. Norland MR, Veith DL (1995) Revegetation of coarse taconite iron ore tailings using municipal solid waste compost. J Hazard Mater 41:123–134CrossRefGoogle Scholar
  53. Pagnanelli F, Moscardini E, Giuliano V, Toro L (2004) Sequential extraction of metals in river sediments of an abandoned pyrite mining area: pollution detection and affinity series. Environ Pollut 132:189–201CrossRefGoogle Scholar
  54. Pareuil P, Hamdoun H, Bordas F, Joussein E, Bollinger JC (2011) The influence of reducing conditions on the dissolution of a Mn-rich slag from pyrometallurgical recycling of alkaline batteries. J Environ Manag 92:102–111CrossRefGoogle Scholar
  55. Parkhurst DL, Appelo C (1999) User’s guide to PHREEQC (version 2): a computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations. U.S. Geological Survey: Earth Science Information Center, Water-Resources Investigations Report 99-4259Google Scholar
  56. Plante B, Benzaazoua M, Bussière B, Biesinger MC, Pratt AR (2010) Study of Ni sorption onto Tio mine waste rock surfaces. Appl Geochem 25:1830–1844CrossRefGoogle Scholar
  57. Plante B, Benzaazoua M, Bussière B (2011) Kinetic testing and sorption studies by modified weathering cells to characterize the potential to generate contaminated neutral drainage. Mine Water Environ 30:22–37CrossRefGoogle Scholar
  58. Ribet I, Ptacek CJ, Blowes DW, Jambor JL (1995) The potential for metal release by reductive dissolution of weathered mine tailings. J Contam Hydrol 17:239–273CrossRefGoogle Scholar
  59. Rose S, Ghazi AM (1998) Experimental study of the stability of metals associated with iron oxyhydroxides precipitated in acid mine drainage. Environ Geol 36:364–370CrossRefGoogle Scholar
  60. Ross GJ (1975) Experimental alteration of chlorites into vermiculites by chemical oxidation. Nature 255(5504):133–134CrossRefGoogle Scholar
  61. Rowell DL (1994) Soil science: methods and applications. Longman Scientific & Technical, HarlowGoogle Scholar
  62. Salbu B, Krekling T (1998) Characterisation of radioactive particles in the environment. Analyst 123:843–850CrossRefGoogle Scholar
  63. Sauvé S, Hendershot W, Allen HE (2000) Solid-solution partitioning of metals in contaminated soils: dependence on pH, total metal burden, and organic matter. Environ Sci Technol 34:1125–1131CrossRefGoogle Scholar
  64. Šcancar J, Mikacic R, Strazar M, Burica O (2000) Total metal concentrations and partitioning of Cd, Cr, Cu, Fe, Ni and Zn in sewage sludge. Sci Total Environ 250:9–19CrossRefGoogle Scholar
  65. Schuwirth N, Hofmann T (2006) Comparability of and alternatives to leaching tests for the assessment of the emission of inorganic soil contamination. J Soils Sediments 6:102–112CrossRefGoogle Scholar
  66. Shu WS, Ye ZH, Lan CY, Zhang ZQ, Wong MH (2001) Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environ Int 26:389–394CrossRefGoogle Scholar
  67. Sidle RC, Kardos LT (1977) Adsorption of copper, zinc, and cadmium by a forest soil. J Environ Qual 6:313–317CrossRefGoogle Scholar
  68. Smuda J, Dold B, Friese K, Morgenstern P, Glaesser W (2007) Mineralogical and geochemical study of element mobility at the sulphide-rich Excelsior waste rock dump from the polymetallic Zn–Pb–(Ag–Bi–Cu) deposit, Cerro de Pasco, Peru. J Geochem Explor 92:97–110CrossRefGoogle Scholar
  69. Smyth DA (1981) Hydrogeological and geochemical studies above the water table in an inactive uranium tailings impoundment near Elliot Lake, Ontario. MSc Project, University of WaterlooGoogle Scholar
  70. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soil. USEPA-600/2-78-054, pp 47–50Google Scholar
  71. Strömberg B, Banwart S (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl Geochem 14:1–16CrossRefGoogle Scholar
  72. Sverdrup H, Warfvinge P (1995) Critical loads of acidity for Swedish forest ecosystems. Ecol Bull 44:75–89Google Scholar
  73. Tack FM, Verloo MG (1995) Chemical speciation and fractionation in soil and sediment heavy metal analysis: a review. Int J Environ Anal Chem 59:225–238CrossRefGoogle Scholar
  74. Tessier A, Campbell PGC, Bisson M (1979) Sequential extraction procedure for speciation of particulate trace metals. Anal Chem 51:844–851CrossRefGoogle Scholar
  75. Tyler LD, McBride MB (1982) Mobility and extractability of cadmium, copper, nickel, and zinc in organic and mineral soil columns. Soil Sci 134:198–204CrossRefGoogle Scholar
  76. Warwick P, Hall A, Pashley V, van der Lee J, Maes A (1998) Zinc and cadmium mobility in sand: effects of pH, speciation, cation exchange capacity (CEC), humic acid and metal ions. Chemosphere 36:2283–2290CrossRefGoogle Scholar
  77. Wong MH (2003) Ecological restoration of mine degraded soils, with emphasis on metal contaminated soils. Chemosphere 50:775–780CrossRefGoogle Scholar
  78. Wong JWC, Ip CM, Wong MH (1998) Acid-forming capacity of lead–zinc mine tailings and its implications for mine rehabilitation. Environ Geochem Health 20:149–155CrossRefGoogle Scholar
  79. Xue HB, Jansen S, Prasch A, Sigg L (2001) Nickel speciation and complexation kinetics in fresh water by ligand exchange and DPCSV. Environ Sci Technol 35:539–546CrossRefGoogle Scholar
  80. Zachara JM, Cowan CE, Resch CT (1991) Sorption of divalent metals on calcite. Geochim Cosmochim Acta 55:1549–1562CrossRefGoogle Scholar
  81. Zazzi à (2009) Chlorite: geochemical properties, dissolution kinetics and Ni (II) sorption. PhD thesis, KTH Chemical Science and Engineering, Stockholm, Sweden. http://www.diva-portal.org/smash/get/diva2:209484/fulltext01.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Soil Science, College of AgricultureBu-Ali Sina UniversityHamadanIran

Personalised recommendations