Advertisement

Mine Water and the Environment

, Volume 36, Issue 2, pp 273–282 | Cite as

Complexation of Ni(II) by Dimethylglyoxime for Rapid Removal and Monitoring of Ni(II) in Water

  • Adriana Ferancová
  • Maarit K. Hattuniemi
  • Adama M. Sesay
  • Jarkko P. Räty
  • Vesa T. Virtanen
Technical Article

Abstract

The complexation of Ni(II) with dimethylglyoxime (DMG) entrapped within a Nafion membrane and a DMG–sol–gel matrix was studied and compared for different solutions. First and pseudo-second order kinetic models, Elovich, intra-particle, and liquid film diffusion models were applied to evaluate sorption kinetics. Complexation of Ni(II) by DMG entrapped in the polymeric materials followed a pseudo-second order kinetic model; moreover, DMG in Nafion also allowed diffusion-controlled uptake. The pseudo-second order rate constant was significantly higher for the free ligand in solution than for Ni(II) accumulation in the surface-attached DMG-Nafion. The DMG–sol–gel removal ability of Ni(II) was tested using actual mine water. The presence of interferences only insignificantly decreased the removal percentage of Ni(II), thus confirming the high selectivity of DMG towards Ni(II). Also, an electrochemical sensor modified with DMG in Nafion was investigated further for direct electrochemical determination of Ni(II) in untreated mine water. Determination errors and interference effects were low. Thus, this approach represents an effective potential solution for selective Ni(II) removal from mine water as well as a rapid and cheap sensor for on-site monitoring of Ni(II) in mine and environmental waters.

Keywords

Sorption kinetics Direct monitoring Metals Electrochemical sensor Untreated mine water 

Die Komplexierung von Ni(II) durch Dimethylglyoxime zur schnellen Entfernung und Überwachung von Ni(II) in Wasser

Zusammenfassung

Die Komplexierung von Ni(II) mit Dimethylglyoxim (DGM), immobilisiert in einer Nafion-Membran und in einer Gel-Matrix, wurde für unterschiedliche wässrige Lösungen untersucht und verglichen. Um die Reaktionskinetik zu bewerten, wurden Modelle erster und pseudo-zweiter Ordnung sowie das Elovich-, das Intra-Partikel- und das Flüssigkeitsfilm-Diffusions-Modell angewendet. Die Komplexierung von Ni(II) durch in Polymeren immobilisiertes DMG folgte einer pseudo-zeiten Ordnung. Für die Immobilisierung in der Nafion-Membran ließ sich auch ein Modell mit diffusionskontrollierter Kinetik anwenden. Die Geschwindigkeitskonstante der pseudo-zweiten Ordnung war für frei gelöstes DGM signifikant höher als für DMG, das in Polymeren fixiert war. Die Möglichkeit, Ni(II) mit Gel-immobilisiertem DMG zu entfernen, wurde mit frischem Grubenwasser getestet. Interferenzen mit anderen Ionen verringerten die Eliminationsrate von Ni(II) nicht signifikant, was die hohe Selektivität von DMG bestätigt. Außerdem wurde ein elektrochemischer Sensor getestet, für den eine Nafion-Membran mit immobilisiertem DMG verwendet wurde, um Ni(II) in unbehandeltem Grubenwasser elektrochemisch zu bestimmen. Bestimmungsfehler und Querempfindlichkeiten waren klein. Damit stellt dieser Ansatz eine effektive potentielle Möglichkeit für die selektive Entfernung von Ni(II) aus Grubenwasser sowie für die Herstellung schneller und preiswerter Sensoren für die in situ-Überwachung von Wasser in der Umwelt einschließlich Grubenwasser dar.

Complejación de Ni(II) con dimetilglioxima para la rápida remoción y monitoreo de Ni(II) en agua

Resumen

La complejación de Ni(II) con dimetilglioxima (DMG) entrampada dentro de una membrana Nafion y una matriz DMG-sol-gel, se estudió y se comparó para diferentes soluciones. La cinética de sorción se evaluó a través de los modelos cinéticos de primer y seudo segundo orden, del modelo Elovich y de los modelos de difusión intrapartícula y a través de la película líquida. La complejación de Ni(II) por DMG entrampada en los materiales poliméricos siguió una cinética de seudo segundo orden; además, DMG en Nafion también permitió una sorción controlada por difusión. La constante de velocidad de seudo segundo orden fue significativamente mayor para el ligando libre en solución que para la acumulación de Ni(II) sobre la superficie de DMG-Nafion. La remoción de Ni(II) por DMG-sol-gel fue analizada usando agua real de mina. La presencia de interferencias solo decreció de modo insignificante el porcentaje de remoción de Ni(II), confirmando la alta selectividad de DMG por Ni(II). Además, se utilizó un sensor electroquímico modificado con DMG en Nafion para la determinación de Ni(II) en agua de mina no tratada. Los errores en la determinación y los efectos de interferencia fueron bajos. Así, esta aproximación representa una solución potencialmente efectiva para la remoción de Ni(II) desde agua de mina así como un sensor rápido y barato para el monitorio on line de Ni(II) en aguas ambientales y en la mina. 

丁二酮肟络合法快速除镍(II)和镍(II)监测

抽象

本文比较研究了镍(II)与丁二酮肟(DMG)的络合体捕集于全氟磺酸膜及丁二酮肟-溶胶—凝胶的特性。应用一级和拟二级反应动力学模型、叶洛维奇模型(Elovich)、颗粒内及液膜扩散模型分析了它们的吸附动力学过程。捕集于聚合材料的镍(II)与DMG络合反应遵循拟二级反应动力学规律;捕集于全氟磺酸膜内的DMG络合遵行扩散控制吸收规律。溶剂中自由配体的拟二级反应速率常数明显高于捕集在全氟磺酸膜内的镍(II)-DMG络和体。利用真实矿井水测试了丁二酮肟-溶胶—凝胶的镍(II)去除能力。干扰因素对镍(II)去除率影响较小,证明丁二酮肟对镍(II)的选择性非常好。同时,利用全氟磺酸膜内的DMG修正电化学传感器直接测定了未处理矿井水的镍(II)含量。镍(II)含量测试误差和干扰因素影响都较小。镍(II)与丁二酮肟(DMG)络合法既能选择性去除矿井废水中镍(II),又能实现矿井水及水环境中镍(II)的经济、快速实时监测。.

Notes

Acknowledgments

This research was financially supported by the Finnish Funding Agency for Technology and Innovation (TEKES) through its Green Mining Program and industrial partners Metso Automation Oy, Outotec Oyj, Talvivaara Mining Company Plc, and Ima Engineering Ltd.

Supplementary material

10230_2016_402_MOESM1_ESM.docx (15 kb)
Supplementary material 1 (DOCX 15 kb)

References

  1. Barbati AC, Kirby BJ (2014) Electrokinetic measurements of thin Nafion films. Langmuir 30:1985–1993CrossRefGoogle Scholar
  2. Bobrowski A, Krolicka A, Maczuga M, Zarebski J (2014) A novel screen-printed electrode modified with lead film for adsorptive stripping voltammetric determination of cobalt and nickel. Sens Actuat B 191:291–297CrossRefGoogle Scholar
  3. Celo V, Murimboh J, Salam MSA, Chakrabarti CL (2001) A kinetic study of nickel complexation in model systems by adsorptive cathodic stripping voltammetry. Environ Sci Technol 35:1084–1089CrossRefGoogle Scholar
  4. Chergui A, Madjene F, Trari M, Khouider A (2014) Nickel removal by biosorption onto medlar male flowers coupled with photocatalysis on the spinel ZnMn2O4. J Environ Health Sci Eng 12(13):1. doi: 10.1186/2052-336X-12-13 Google Scholar
  5. Elkady MF, Feteha MY, El Essawy NA (2014) Microstructure and electric conductivity properties of novel synthesized cesium doped nano-zirconium vanadate. Int J Res Environ 14:184–194Google Scholar
  6. Ferancova A, Hattuniemi MK, Sesay AM, Räty JP, Virtanen VT (2015) Electrochemical monitoring of nickel(II) in mine water. Mine Water Environ. doi: 10.1007/s10230-015-0357-1 Google Scholar
  7. Goswami S, Klaus S, Benziger J (2008) Wetting and absorption of water drops on Nafion films. Langmuir 24:8627–8633CrossRefGoogle Scholar
  8. Gupta SS, Bhattacharyya KG (2008) Immobilization of Pb(II), Cd(II) and Ni(II) ions on kaolinite and montmorillonite surfaces from aqueous medium. J Environ Manage 87:46–58CrossRefGoogle Scholar
  9. Gupta SS, Bhattacharyya KG (2011) Kinetics of adsorption of metal ions on inorganic materials: a review. Adv Colloid Interface Sci 162:39–58CrossRefGoogle Scholar
  10. Hianik T, Ostatna V, Zajacova Z, Stoikova E, Evtugyn G (2005) Detection of aptamer-protein interactions using QCM and electrochemical indicator methods. Bioorg Med Chem Lett 15:291–295CrossRefGoogle Scholar
  11. Karthika C, Sekar M (2013) Comparison studies of adsorption properties on Ni(II) removal by strong and weak acid cation-exchange resin. Res J Chem Sci 3:65–69Google Scholar
  12. Krishna RH, Gilbert WB (2014) Biosorption of Ni(II) from aqueous solution using Acer saccharum leaves (ASL) as a potential sorbent. Int J Adv Chem 2:1–5Google Scholar
  13. Mäkinen R (2008) Drinking water quality and network materials in Finland. Finnish Institute of Drinking Water/Prizztech Ltd, FinlandGoogle Scholar
  14. Miller A, Wildeman T, Figuero L (2013) Zinc and nickel removal in limestone based treatment of acid mine drainage: the relative role of adsorption and co-precipitation. Appl Geochem 37:57–63CrossRefGoogle Scholar
  15. Mousavi HZ, Hosseinfar A, Jahed V (2012) Studies of the adsorption thermodynamics and kinetics of Cr(III) and Ni(II) removal by polyacrylamide. J Serb Chem Soc 77:393–405CrossRefGoogle Scholar
  16. Nezamzadeh-Ejhieh A, Kabiri-Samani M (2013) Effective removal of Ni(II) from aqueous solutions by modification of nano particles of clinoptilolite with dimethylglyoxime. J Hazard Mater 260:339–349CrossRefGoogle Scholar
  17. Padmavathy V, Vasudevan P, Dhingra SC (2003) Biosorption of nickel(II) ions on Baker’s yeast. Process Biochem 38:1389–1395CrossRefGoogle Scholar
  18. Piankova LA, Malakhova NA, Stozhko NYu, Brainina KhZ, Murzakaev AM, Timoshenkova OR (2011) Bismuth nanoparticles in adsorptive stripping voltammetry of nickel. Electrochem Commun 13:981–984CrossRefGoogle Scholar
  19. Ramamurthi V, Gomathi Priya P, Saranya S, Basha CA (2009) Recovery of nickel(II) ions from electroplating rinse water using hectorite clay. Modern Appl Sci 3:37–51CrossRefGoogle Scholar
  20. Sekar MMA, Bloch W, St John PM (2005) Comparative study of sequence-dependent hybridization kinetics in solution and on microspheres. Nucl Acids Res 33:366–375CrossRefGoogle Scholar
  21. Seneviratne J, Cox JA (2000) Sol–gel materials for the solid phase extraction of metals from aqueous solution. Talanta 52:801–806CrossRefGoogle Scholar
  22. Sinko K (2010) Influence of chemical conditions on the nanoporous structure of silicate aerogels. Materials 3:704–740CrossRefGoogle Scholar
  23. Thomas FG, Henze G (2001) Introduction to voltammetric analysis: theory and practice. Csiro Publ, ClaytonGoogle Scholar
  24. Wang J, Nascimento VB, Lu J, Park DS, Angnes L (1996) Disposable nickel screen-printed sensor based on dimethylglyoxime-containing carbon ink. Electroanalysis 8:635–638CrossRefGoogle Scholar
  25. Wang J, Pamidi PVA, Nascimento VB, Angnes L (1997) Dimethylglyoxime doped sol-gel carbon composite voltammetric sensor for trace nickel. Electroanalysis 9:689–692CrossRefGoogle Scholar
  26. Water Environment Federation (1999) Standard methods for the examination of water and wastewater. American Public Health Assoc, American Water Works Assoc, Washington, DCGoogle Scholar
  27. Wu FC, Tseng RL, Juang RS (2009) Characteristics of Elovich equation used for the analysis of adsorption kinetics in dye-chitosan systems. Chem Eng J 150:366–373CrossRefGoogle Scholar
  28. Xue T, Longwell RB, Osseo-Asare K (1991) Mass transfer in Nafion membrane systems: effect of ionic size and charge on selectivity. J Membr Sci 58:175–189CrossRefGoogle Scholar
  29. Xue HB, Jansen S, Prasch A, Sigg L (2001) Nickel speciation and complexation kinetics in freshwater by ligand exchange and DPCSV. Environ Sci Technol 35:539–546CrossRefGoogle Scholar
  30. Zhang X, Wang X (2015) Adsorption and desorption of nickel(II) ions from aqueous solution by a lignocellulose/montmorillonite nanocomposite. PLoS One 10:e011707Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Adriana Ferancová
    • 1
  • Maarit K. Hattuniemi
    • 1
  • Adama M. Sesay
    • 1
  • Jarkko P. Räty
    • 1
  • Vesa T. Virtanen
    • 1
  1. 1.Kajaani University Consortium, Measurement Technology Unit CEMIS-OuluUniversity of OuluKajaaniFinland

Personalised recommendations