Mine Water and the Environment

, Volume 36, Issue 2, pp 248–254 | Cite as

Assessment of Soil and Water Contamination at the Tab-Simco Coal Mine: A Case Study

  • Abhishek RoyChowdhury
  • Dibyendu Sarkar
  • Yang Deng
  • Rupali Datta
Technical Article


In 1996, the Tab-Simco site, an abandoned coal mine 10 km southeast of Carbondale, Illinois, was listed as one of the most highly contaminated AMD sites in the mid-continent region. A suite of impacted soil and water samples were collected from various locations to characterize the current extent of AMD pollution, following standard U.S. EPA protocols. The mean pH of soil and water samples were found to be 2.69 and 2.07, respectively. The mean sulfur content of the soil samples was 0.5 %. The AMD-impacted soils contained high concentrations of Fe, Zn, Ni, Cr, Cu, Pb, and As. The AMD also contained high concentrations of Fe, As, Zn, Pb, Cr, Al, Cd, Cu, and Ni, as well as \({\text{SO}}_{4}^{2 - }\), all of which were significantly above their U.S. EPA permissible limits for surface water.


Acid base accounting RCRA 8 metals Reclamation Sulfate reducing bioreactor Surface mining 

Bewertung der Boden- und Wasserkontamination am Tab Simco Kohlebergwerk: Eine Fallstudie


1996 wurde das Tab-Simco Areal, ein stillgelegtes Kohlebergwerk ca. 10 km südöstlich von Carbondale, Illinois, als eines der am stärksten durch saures Grubenwasser (AMD) kontaminierten Gebiete in den zentralen USA ausgewiesen. An verschiedenen Stellen wurden entsprechend den Standards der US-EPA Boden- und Wasserproben entnommen, um das aktuelle Ausmaß der Kontamination durch AMD zu erfassen. Der mittlere pH-Wert des Bodens lag bei 2,69 und der des Wassers 2,07. Der mittlere Schwefelgehalt des Bodens betrug 0,5%. Die durch AMD kontaminierten Böden hatten hohe Konzentrationen an Fe, Zn, Ni, Cr, Cu, Pb und As. Das saure Grubenwasser hatte hohe Konzentrationen an Fe, As, Zn, Pb, Cr, Al, Cd, Cu und Ni sowie SO42-, die alle signifikant über den zulässigen Grenzwerten der US-EPA für Oberflächengewässer lagen.

Relevamiento de la contaminación de suelo y agua en la mina de carbón Tab Simco: un estudio de caso


En 1996, el sitio Tab-Simco, una mina de carbón abandonada que está ubicada 10 Km al sudeste de Carbondale, Illinois, fue listada como uno de los sitios más altamente contaminados por drenaje ácido de minas (AMD) en la región media continental. Muestras de aguas y de suelo impactado fueron colectada desde varios puntos del sitio para caracterizar la extensión actual de la polución por AMD, siguiendo protocolos estándar de U.S. EPA. Los valores promedio de pH en el suelo y en las muestras de agua fueron 2,69 y 2,07, respectivamente. El contenido promedio de azufre en el suelo fue 0,5%. Los suelos impactados por el AMD contenían altas concentraciones de Fe, Zn, Ni, Cr, Cu, Pb y As. El AMD también contenía altas concentraciones de Fe, As, Zn, Pb, Cr, Al, Cd, Cu y Ni, así como SO42-, todas significativamente superiores a los límites permitidos U.S. EPA para agua superficial. 

Tab Simco煤矿土壤与水污染评价:案例研究


Tab-Simco煤矿为伊利诺斯州(Illinois)卡本代尔(Carbondale)东南10km的废弃煤矿,1996年被列为中部大陆最严重酸性废水污染区之一。依照美国环保局标准协议,多点采集了受污染土样和水样,以研究AMD当前污染程度。土壤和水样的平均pH值分别为2.69和2.07。土样的平均硫含量为0.5%。AMD污染土样含有高浓度的Fe、Zn、Ni、Cr、Cu、Pb和As。AMD中同样也含有高浓度的Fe、As、Zn、Pb、Cr、Al、Cd、Cu、Ni及SO 4 2- ,都明显超过美国环保局地表水质界限。



The authors thank the United States Department of the Interior, Office of Surface Mining Reclamation and Enforcement for providing funding for this study (OMB No.: 4040-0004). ARC gratefully acknowledges the Assistantship offered to him by the Ph.D. Program in Environmental Management at Montclair State University. Assistance provided to ARC by Dr. Samuel Ma and Mathew Adler from the Southern Illinois University at Carbondale in collecting the soil and water samples from the Tab-Simco site is also acknowledged.


  1. Behum PT, Kiser R, Lewis L (2010) Investigation of the acid mine drainage at the Tab-Simco mine, Carbondale, Illinois. In: Proceedings, 38th annual meeting of the National Association of State Land Reclamationists, Carbondale, ILGoogle Scholar
  2. Behum PT, Lefticariu L, Bender KS, Segid YT, Burns AS, Pugh CW (2011) Remediation of coal-mine drainage by a sulfate-reducing bioreactor: a case study from the Illinois coal basin, USA. Appl Geochem 26:S162–S166. doi: 10.1016/j.apgeochem.2011.03.093 CrossRefGoogle Scholar
  3. Behum PT, Lewis L, Kiser R, Lefticariu L (2012) Remediation of acid mine drainage using sulfate-reducing bioreactors—case example: the Tab-Simco passive treatment system. In: Proceedings, National meeting of the American Society of Mining and Reclamation (ASMR), Tupelo, MSGoogle Scholar
  4. Behum PT, Lefticariu L, Walter E, Kiser R (2013) Passive treatment of coal-mine drainage by a sulfate-reducing bioreactor in the Illinois coal basin. In: Proceedings, West Virginia Mine Drainage Task Force symposium, Morgantown, WVGoogle Scholar
  5. Benner SG, Blowes DW, Ptacek CJ (1997) A full-scale porous reactive wall for prevention of acid mine drainage. Groundw Monit Remediat 17(4):99–107CrossRefGoogle Scholar
  6. Burns AS, Pugh CW, Segid YT, Behum PT, Lefticariu L, Bender KS (2012) Performance and microbial community dynamics of a sulfate-reducing bioreactor treating coal generated acid mine drainage. Biodegradation 23:415–429. doi: 10.1007/s10532-011-9520-y CrossRefGoogle Scholar
  7. Ferguson KD, Erickson PM (1988) Pre-mine prediction of acid mine drainage. In: Salomons W, Forstner U (eds) Dredged material and mine tailings. Springer, Berlin, pp 24–43. doi: 10.1007/978-3-642-61362-3_2 Google Scholar
  8. Gerhardt A, de Bisthoven LJ, Soares AMVM (2004) Macroinvertebrate response to acid mine drainage: community metrics and on-line behavioural toxicity bioassay. Environ Pollut 130(2):263–274CrossRefGoogle Scholar
  9. Hansen JA, Welsh PG, Lipton J, Cacela D (2002) Effects of copper exposure on growth and survival of juvenile bull trout. Trans Am Fish Soc 131(4):690–697CrossRefGoogle Scholar
  10. Jennings SR, Neuman DR, Blicker PS (2008) Acid mine drainage and effects on fish health and ecology: a review. Reclam Res Group Publ, Bozeman, MT. Retrieved from:
  11. Kim AG, Heisey B, Kleinmann R, Duel M (1982) Acid mine drainage: control and abatement research. U.S. DOI, Bureau of Mines IC 8905, p 22Google Scholar
  12. Lewis LL (2008) Addressing acid mine drainage from complex conditions at the Tab-Simco mine. In: Proceedings, 30th Annual National Association of Abandoned Mines Land Programs conference, Durango, CO, USAGoogle Scholar
  13. Martin AJ, Goldblatt R (2007) Speciation, behavior, and bioavailability of copper downstream of a mine-impacted lake. Environ Toxicol Chem 26(12):2594–2603CrossRefGoogle Scholar
  14. Mills C (2014) Acid base accounting (ABA) test procedures. Retrieved from: Website accessed: 15 Dec 2014
  15. North Carolina Administrative Code (2003) NC DENR—Division of water quality “Redbook” surface waters and wetlands standards. NC Administrative Code 15A NCAC 02B .0100 & .0200. Amended effective: 1 April 2003Google Scholar
  16. Page AL, Miller RH, Keeney DR (1982) Methods of soil analysis: part 2—chemical and microbiological properties, 2nd edn. American Society of Agronomy, Soil Science Society of America, Madison, pp 199–209Google Scholar
  17. Plumb Jr. RH (1981) Procedure for handling and chemical analysis of sediment and water samples. Tech. Rep. EPA/CE-81-1, prepared by Great lakes Laboratory. State Univ College at Buffalo, Buffalo, NY. Retrieved from:$FILE/Plumb.pdf
  18. Rhoades JD (1996) Salinity: electrical conductivity and total dissolved solids. In: Sparks DL, Page AL, Helmke PA, Loeppert RH (eds) Methods of soil analysis, part 3: chemical methods. SSSA book series, vol 5.3. Soil Science Society of America, Madison, pp 417–435. doi: 10.2136/sssabookser5.3.c14 Google Scholar
  19. RoyChowdhury A, Sarkar D, Datta D (2015) Remediation of acid mine drainage-impacted water. Curr Pollution Rep 1:131–141. doi: 10.1007/s40726-015-0011-3 CrossRefGoogle Scholar
  20. Schmidt TS, Soucek DJ, Cherry DS (2002) Modification of an ecotoxicological rating to bioassess small acid mine drainage-impacted watersheds exclusive of benthic macroinvertebrate analysis. Environ Toxicol Chem 21(5):1091–1097Google Scholar
  21. Segid YT (2010) Evaluation of the Tab-Simco acid mine drainage treatment system: water chemistry, performance and treatment processes. M.S. Thesis, Dept of Geology, Southern Illinois Univ, Carbondale, ILGoogle Scholar
  22. Skousen J, Ziemkiewicz P (2005) Performance of 116 passive treatment systems for acid mine drainage. In: Proceedings, 2005 national meeting of the ASMR, Breckenridge, CO, pp 1100–1133Google Scholar
  23. Smith PA (2002) Characterization of an acid mine drainage site in Southern Illinois. In: Proceedings, 19th annual national meeting of the ASMR, Lexington, KY, pp 472–486Google Scholar
  24. Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and minesoils (West Virginia Univ, Morgantown College of Agriculture and Forestry): U.S. Environmental Protection Agency, Cincinnati, Ohio. EPA-600/2-78-054, U.S. National Technical Information Service Report PB-280 495, pp 47–50Google Scholar
  25. Soucek DJ, Cherry DS, Currie RJ, Latimer HA, Trent GC (2000) Laboratory and field validation in an integrative assessment of an acid mine drainage-impacted watershed. Environ Toxicol Chem 19(4):1036–1043Google Scholar
  26. Trout Unlimited (2011) The west branch Susquehanna recovery benchmark project. Lock Haven, PA. Retrieved from:
  27. U.S. EPA (1994a) Technical document: acid mine drainage prediction. EPA 530-R-94-036. NTIS PB94-201829Google Scholar
  28. U.S. EPA (1994b) Methods for the chemical analysis of water and wastes. EPA/600/4-79/020, U.S. Environmental Protection Agency, Washington, DCGoogle Scholar
  29. U.S. EPA (1994c) Water quality standards handbook, 2nd edn. EPA 823-B-94-005a, U.S. Environmental Protection Agency, Office of Science and Technology, Washington, DCGoogle Scholar
  30. U.S. EPA (1996) Test methods for evaluating solid waste, SW 846, 3rd edn, U.S. Environmental Protection Agency, Office of Solid Waste and Emergency Response, Washington, DCGoogle Scholar
  31. U.S. EPA (2011) Mining operation as nonpoint source pollution. Retrieved from:
  32. USDA Forest Service (1993) Acid mine drainage from mines on the National Forests, a management challenge. US Forest Serv Publ 1505:1–12Google Scholar
  33. USDA Forest Service (2005) Wildland waters. Issue 4. FS-812. Retrieved from:

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Abhishek RoyChowdhury
    • 1
  • Dibyendu Sarkar
    • 1
  • Yang Deng
    • 2
  • Rupali Datta
    • 3
  1. 1.Department of Civil, Environmental and Ocean EngineeringStevens Institute of TechnologyHobokenUSA
  2. 2.Department of Earth and Environmental StudiesMontclair State UniversityMontclairUSA
  3. 3.Department of Biological SciencesMichigan Technological UniversityHoughtonUSA

Personalised recommendations