Mine Water and the Environment

, Volume 36, Issue 2, pp 299–309 | Cite as

Quantifying Iron Concentration in Local and Synthetic Acid Mine Drainage: A New Technique Using Handheld Field Spectrometers

Technical Article

Abstract

Pit lakes present a concern for public safety and environmental quality. With continuing advancement of imaging satellites, remote sensing spectroscopy may provide a useful tool for monitoring pit water quality across vast mining districts. Visible to shortwave infrared remote sensing has been widely used to monitor acid mine drainage (AMD) mineralogy at mine sites. However, few studies have examined the spectral signatures of mine-affected waters and open pit water bodies from a remote platform. The motivation for this study was to identify the spectral characteristics of AMD in a controlled laboratory setting in order to better interpret mine water bodies in remote sensing imagery. The spectral response of synthetic and local AMD were measured using a field spectrometer. Solutions with increasing Fe3+ and Fe2+ concentrations were mixed to mimic the chemical properties of local AMD. Synthetic solutions with known Fe concentrations were compared with local AMD for quantitative assessment. The spectral signatures of Fe3+ dominated waters possessed distinct characteristics that may be used for diagnostic identification. Specifically, the region between 0.35 and 0.625 µm was used to approximately quantify Fe3+ concentrations. Subtle changes in Fe concentrations in local AMD were identified using a field spectrometer alone. These findings suggest that subtle changes in open pit water quality may also be qualitatively and quantitatively measured by remote sensing spectroscopy.

Keywords

Aqueous ferric iron Environmental monitoring Mine waste Spectroscopy 

Quantifizierung der Eisenkonzentration von synthetischer und in situ vorkommender saurer Bergbaudränage: Eine neue Technik unter Nutzung tragbarer Feldspektrometer

Zusammenfassung

Bergbauseen sind eine Sorge in Bezug auf die öffentliche Sicherheit und die Umweltqualität. Mit zunehmenden Fortschritten bildgebender Satelliten kann Fernerkundungsspektroskopie ein nützliches Werkzeug für die Überwachung der Qualität von Bergbauseen über ausgedehnte Bergbaudistrikte werden. Fernerkundung mit sichtbarem bis kurzwelligem Infrarot wurde oft eingesetzt, um die Mineralogie saurer Bergbaudränage (AMD) in Bergbauen zu überwachen. Jedoch nur wenige Studien haben die spektralen Signaturen bergbaubeeinflusster Wässer und von Tagebauwässern mittels Fernerkundung untersucht. Der Beweggrund für diese Studie war die Identifizierung der spektralen Charakteristika von AMD unter kontrollierten Laborbedingungen, um Bergbauwässer in Fernerkundungsbildern besser zu interpretieren. Die spektrale Reaktion synthetischer und in situ vorkommender saurer Bergbaudränage wurde mit einem Feldspektrometer gemessen. Lösungen mit erhöhten Fe+3 und Fe+2 Konzentrationen wurden vermengt um die Eigenschaften von in situ AMD zu imitieren. Synthetische Lösungen mit bekannten Fe Konzentrationen wurden mit in situ AMD verglichen, mit dem Ziel einer quantitative Beurteilung. Die spektralen Signaturen der Fe+3 dominierten Wässer besaßen deutliche Charakteristika, die für eine diagnostische Identifizierung genutzt werden können. Besonders die Region zwischen 0.35 und 0.625 μm wurde genutzt, um Fe+3 Konzentrationen zu quantifizieren. Geringe Veränderungen der in situ Fe Konzentrationen wurden alleine mit einem Feldspektrometer identifiziert. Diese Ergebnisse zeigen, daß geringe Veränderungen der Wasserqualität in Tagebauen auch qualitativ und quantitativ durch Fernerkundungsspektroskopie gemessen werden können.

Cuantificando la concentración de hierro en drenajes ácidos de mina regionales y sintéticos: una nueva técnica usando espectrofotómetros de campo portátiles

Resumen

Los lagos de hoyos de minas significan una preocupación para la seguridad pública y la calidad ambiental. Con el continuo avance de las imágenes por satélite, la espectroscopía por detección remota puede significar una herramienta útil para monitorear la calidad del agua de hoyos a través de vastos distritos mineros. Sensores remotos usando visible o IR de onda corta han sido ampliamente usados para monitorear mineralogía de drenajes ácidos de mina (AMD) en sitios mineros. Sin embargo, pocos estudios han examinado las señales espectrales de aguas impactadas por la minería o cuerpos de agua de hoyos de minas, desde una plataforma remota. La motivación para este estudio fue identificar las características espectrales de AMD para interpretar mejor los cuerpos de agua en minas en las imágenes teledectadas. Se midió la respuesta espectral de AMD sintéticos y regionales mediante un espectrómetro de campo. Soluciones con concentraciones crecientes de Fe+3 y Fe+2 fueron mezcladas para similar las propiedades químicas de AMD regionales. Soluciones sintéticas con concentraciones conocidas de Fe fueron comparadas con AMD regionales para un relevamiento cuantitativo. Las señales espectrales de Fe+3 dominaron las aguas que poseían distintas características que podrían ser usadas para identificación del diagnóstico. Específicamente, la región entre 0,35 y 0,625 µm fue usada para cuantificar aproximadamente las concentraciones de Fe+3. Cambios sutiles en las concentraciones de Fe fueron identificados usando exclusivamente un espectrómetro de campo. Estos hallazgos sugirieron que cambios sutiles en la calidad del agua del hoyo de mina, pueden ser también detectados cuali y cuantitativamente por espectroscopía remota.

定量评价区域水体及人工合成酸性矿山废水的铁浓度: 一种现场手持光谱仪技术

摘要

矿坑湖的公共安全及环境影响一直倍受关注。随着卫星成像技术发展, 遥感光谱技术有望成为大范围监测矿坑水质的有效手段。虽然可见短波红外遥感已经广泛应用于酸性矿山废水的矿物学特征监, 但是仍很少有文献利用远程平台实现露天矿坑水体的光谱特征监测。本研究的目的是在可控的实验条件下识别酸性矿山废水(AMD)的光谱特征, 从而使矿山废水的遥感影像解译成为可能。利用现场手持光谱仪测试了人工合成酸性矿山废水(AMD)及区域真实酸性矿山废水(AMD)的光谱响应。通过混入高浓度Fe+3及 Fe+2溶液人工合成酸性矿山废水(AMD)。已知Fe浓度的人工合成酸性水溶液与区域真实酸性矿山废水溶液进行对比实现定量评价。富含Fe+3水样表现出的独特光谱特征使其便于识别; 尤其可利用0.35µm~0.625µm光谱区近似地定量评价Fe+3浓度。单独利用现场光谱仪可以识别区域Fe浓度的微小变化。研究结果表明露天矿坑水质的微小变化或许能够利用遥感光谱进行定性及定量监测。

Notes

Acknowledgments

We thank Doug Carey and Taylor Zetner from the Lahontan Regional Water Quality Control Board for granting us access to the Leviathan Mine Superfund site. Acknowledgement is extended to Dr. Simon Poulson and Dr. Glenn Miller for serving as advisory committee members, and graduate student Neil Pearson for additional support. Funding for this project was provided by the National Aeronautics and Space Administration (NASA) HyspIRI Preparatory Airborne Activities for Energy and Mineral Resources through Grant NNX12AQ17G to the University of Nevada, Reno.

Supplementary material

10230_2016_399_MOESM1_ESM.eps (131.4 mb)
Supplemental Fig. 1 Leviathan Mine: a) From the south shore of Pond 1 looking north. Inlet pipe is along shoreline. Water treatment facility in background. Photo taken by author on 05/22/2014. b) From east shore of Pond 2 South looking west. Photo taken by author on 04/24/2014. Photos are not color enhanced and show the vivid red color of water collected in the Leviathan evaporation ponds (EPS 134541 kb)
10230_2016_399_MOESM2_ESM.eps (68 kb)
Supplemental Fig. 2 Plot demonstrating Continuum Removal (CR) method. Straight-line segments denote the continuum. CR reflectance = source spectrum/continuum spectrum. Example source spectrum is 200 mg/L Fe3+ solution (EPS 68 kb)
10230_2016_399_MOESM3_ESM.eps (1.3 mb)
Supplemental Fig. 3 Eh-pH diagram for the system Fe-O2-S-H2O at 25 ̊C, showing stability fields of goethite (α-FeOOH), pyrite (FeS2), and monoclinic pyrrhotite (Fe7S8) for ΣS(aq) = 10−2 mol/kg, and total carbonate 10−4 mol/kg. ΣFe(aq) = 10−6 and 10−4 mol/kg at aqueous/solid boundaries. The blue shaded box shows dissolved iron occurs chiefly in sulfate complexes given the pH and Eh range. Adapted from Barnes and Langmuir (1979) (EPS 1334 kb)

References

  1. Brown TL, LeMay HE, Bursten BE, Murphy CJ (2006) Chemistry: the central science. Ch 13, properties of solutions, 10th edn. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  2. Burns RG (1993) Origin of electronic spectra of minerals in the visible to near-infrared region. Remote geochemical analysis: elemental and mineralogic composition. Cambridge University Press, New York, pp 3–29Google Scholar
  3. California Regional Water Quality Control Board, Lahontan Region (2015) Year-end report for the 2014 field season at Leviathan Mine. http://www.swrcb.ca.gov/lahontan/water_issues/projects/leviathan_project/docs/lev2014rpt.pdf. Accessed 20 Aug 2015
  4. Castendyk DN, Eary LE (2009) Mine pit lakes—characteristics, predictive modeling, and sustainability. Ch 1, the nature and global distribution of Pit Lakes, vol 3, Soc for Mining, Metallurgy, and Exploration (SME), electronic edn, pp 1–11Google Scholar
  5. Clark RN, Roush TL (1984) Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J Geophys Res 89(B7):6329–6340. doi: 10.1029/JB089iB07p06329 CrossRefGoogle Scholar
  6. Cloutis EA, Hawthorne FC, Mertzman SA, Krenn K, Craig MA, Marcino D, Methot M, Strong J, Mustard JF, Blaney DL, Bell JF, Vilas F (2006) Detection and discrimination of sulfate minerals using reflectance spectroscopy. Icarus 184(1):121–157. doi: 10.1016/j.icarus.2006.04.003 CrossRefGoogle Scholar
  7. Crowley JK, Williams DE, Hammarstrom JM, Piatak N, Chou IM, Mars JC (2003) Spectral reflectance properties (0.4–2.5 μm) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulphate-hydrate minerals associated with sulphide-bearing mine wastes. Geochem Explor Environ Anal 3(3):219–228. doi: 10.1144/1467-7873/03-001 CrossRefGoogle Scholar
  8. Crowley JK, Williams DE, Hammarstrom JM, Piatak N, Mars JC, Chou IM (2006) Spectral reflectance properties (0.4–2.5 um) of secondary Fe-oxide, Fe-hydroxide, and Fe-sulfate-hydrate minerals associated with sulfide-bearing mine waste. US Geological Survey OFR 2003-196, Washington, DCGoogle Scholar
  9. Dozier J, Painter TH (2004) Multispectral and hyperspectral remote sensing of alpine snow properties. Ann Rev Earth Planet Sci 32:465–494. doi: 10.1146/annurev.earth.32.101802.120404 CrossRefGoogle Scholar
  10. Duaime TE, Tucci NJ (2009) Butte mine flooding operable unit water-level monitoring and water-quality sampling, 2008 consent decree update. Montana Bureau of Mines and Geology Open File Report 589Google Scholar
  11. Evans JR (1977) Zaca mine and Leviathan mine. In: Mines and mineral resources of alpine county, California, county report 8. California Div of Mines and Geology, pp 22–27Google Scholar
  12. Gammons CH, Harris LN, Castro LM, Cott PA, Hanna BW (2009) Creating lakes from open pit mines: process and considerations, with emphasis on northern environments. Can Tech Rep Fish Aquat Sci 2826:1–106Google Scholar
  13. Green RO, Painter TH, Roberts DA, Dozier J (2006) Measuring the expressed abundance of the three phases of water with an imaging spectrometer over melting snow. Water Resour Res 42(W10402):1–12. doi: 10.1029/2005wr004509 Google Scholar
  14. Hunt GR, Ashley RP (1979) Spectra of altered rocks in the visible and near infrared. Econ Geol 74:1613–1629. doi: 10.2113/gsecongeo.74.7.1613 CrossRefGoogle Scholar
  15. Kruse FA, Lefkoff AB, Dietz JB (1993) Expert system-based mineral mapping in northern Death Valley, California/Nevada, using the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). Remote Sens Environ 44:309–336. doi: 10.1016/0034-4257(93)90024-R CrossRefGoogle Scholar
  16. Langmuir D (1997) Aqueous environmental geochemistry. Ch12: iron and sulfur geochemistry. Prentice-Hall, Upper Saddle River, pp 431–474Google Scholar
  17. Lottermoser BG (2003) Mine wastes. Ch 3: mine water. Springer, New York City, pp 83–141CrossRefGoogle Scholar
  18. McCullough CD, Müller M, Eulitz K, Lund MA (2011) Modelling a pit lake district to plan for abstraction regime changes. In: Proc, Mine Closure Conf, Alberta, Canada, pp 581–592Google Scholar
  19. Murad E, Rojik P (2005) Iron mineralogy of mine-drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Miner 40:427–440. doi: 10.1180/0009855054040181 CrossRefGoogle Scholar
  20. Peichang S, Cheng S, Smith S (2004) Acid lake identification using GIS and remote sensing. In: Proceedings of Geological Soc of America, annual meeting, vol 36(5), p 300Google Scholar
  21. Sanliyuksel D, Yucel MA, Baba A (2014) Change detection and visualization of acid mine lakes using time series satellite image data in geographic information systems (GIS): Can (Canakkale) County, NW Turkey. Environ Earth Sci 72:4311–4323. doi: 10.1007/s12665-014-3330-6 CrossRefGoogle Scholar
  22. Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70:1262–1269Google Scholar
  23. Shevenell LA (2000) Water quality in pit lakes in disseminated gold deposits compared to two natural, terminal lakes in Nevada. Environ Geol 36(7):807–815. doi: 10.1007/s002540050497 CrossRefGoogle Scholar
  24. Vandersluis GD, Straskraba V, Effner SA (1995) Hydrogeological and geochemical aspects of lakes forming in abandoned open pit mines. Proc, water resources at risk. https://www.imwa.info/docs/imwa_1995/IMWA1995_Vandersluis.pdf

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Geologic Sciences and EngineeringUniversity of Nevada, RenoRenoUSA

Personalised recommendations