Advertisement

Mine Water and the Environment

, Volume 36, Issue 2, pp 226–238 | Cite as

Secondary Sulphate Minerals in a Cyprus-Type Ore Deposit, Apliki, Cyprus: Mineralogy and Its Implications Regarding the Chemistry of Pit Lake Waters

  • Danae N. Antivachis
  • Elias Chatzitheodoridis
  • Nikolaos Skarpelis
  • Konstantinos Komnitsas
Technical Article

Abstract

The Apliki mine, a Cyprus-type massive sulphide deposit in Cyprus, was exploited for copper until the mid-1970s. Abandonment of the mine left a deep pit that now hosts a lake fed by surface runoff from the surrounding mineralized zone and hydrothermally altered basalt. Oxidation of the sulphide minerals and factors such as climate and terrain relief control the water–rock interactions that generate acid mine drainage (AMD), which ultimately affects and defines the quality of the lake waters. Pyrite and chalcopyrite constitute an almost inexhaustible sulphide source that leads to the formation of a variety of secondary iron and copper mineral phases. The secondary mineral assemblages in the ore zone are mainly iron, copper, and magnesium sulphates, whereas the lakeshore assemblage is dominated by magnesium-, calcium-, sodium-, and aluminum-bearing sulphate minerals. Near the lakeshore, the highly soluble iron sulphate salts dissolve in the lake water, increasing its iron content. Other less soluble salts are more stable and persist in the lakeshore environment. The precipitation and dissolution of efflorescent salts, and, to a lesser extent, the oxidative weathering of the remaining ore minerals, produce additional AMD. Due to the perpetual cycle of mineral dissolution and precipitation, the lake has a low pH (≈3) and contains high concentrations of some contaminants. The processes that contribute to the formation of the efflorescent mineral assemblages and their environmental impact on pit lake waters, and indeed the complete geochemical system, is a typical example of secondary mineral formation in Cyprus-type Cu-pyrite massive sulphide ore deposits.

Keywords

Efflorescent minerals Acid mine drainage Pyrite oxidation Cu-pyrite massive sulphide deposits 

Sekundäre Sulfatminerale in einer Erzlagerstätte vom Zypern-Typ, Apliki, Zypern: Mineralogie und deren Auswirkungen auf die Beschaffenheit von Tagebauseewässern

Zusammenfassung

In der Apliki-Mine in Zypern, einer Massivsulfidlagerstätte vom Zypern-Typ, wurde bis in die Mitte der 1970er Jahre Kupfererz abgebaut. Nach Stilllegung der Grube verblieb ein tiefes Tagebaurestloch, das heute einen Restsee beherbergt. Dieser wird gespeist von Oberflächenwässern aus der umgebenden mineralisierten Zone sowie einem Areal mit hydrothermal alteriertem Basalt. Sulfidoxidation und weitere Faktoren wie Klima und Geländerelief steuern die Wasser-Gesteins-Wechselwirkungen, die zur Bildung von Sauerwasser (AMD) führen und letztlich die Wasserqualität des Seewassers bestimmen. Pyrit und Chalkopyrit stellen eine nahezu unerschöpfliche Sulfidquelle dar, was zur Bildung einer Vielzahl von sekundären Eisen- und Kupfermineralen führt. Bei den in der Erzzone auftretenden Sekundärmineralen handelt es sich hauptsächlich um Eisen-, Kupfer- und Magnesiumsulfate, wohingegen in der Uferzone magnesium-, kalzium-, natrium- und aluminiumhaltige Sulfatminerale vorherrschen. In Ufernähe lösen sich die gut wasserlöslichen Eisensulfate im Seewasser auf und erhöhen dessen Eisengehalt. Andere weniger gut lösliche Salze sind stabiler und bleiben im Uferbereich zurück. Die Bildung und Wiederauflösung von Salzausblühungen und, zu einem geringeren Teil, die oxidative Verwitterung verbliebener Erzminerale führen zu zusätzlicher Sauerwasserbildung. In Folge des fortwährenden Wechsels von Minerallösung und -ausfällung weist der See einen niedrigen pH-Wert (≈3) und hohe Schadstoffkonzentrationen auf. Die zur Bildung der sekundären Mineralvergesellschaftungen führenden Prozesse, ihr Einfluss auf die Seewasserbeschaffenheit und letztlich das gesamte geochemische System sind ein typisches Beispiel für Sekundärmineralbildung in Kupfer-Pyrit-Massivsulfidlagerstätten vom Zypern-Typ.

Minerales secundarios sulfatados en el depósito mineral tipo Chipre, Apliki, Chipre: mineralogía y sus implicancias sobre la química de las aguas del lago del hoyo de mina

Resumen

La mina Apliki, un depósito sulfurado masivo tipo Chipre, fue explotada en Chipre hasta los mediados de 1970. El abandono de la mina dejó un hoyo profundo que ahora tiene un lago alimentado fundamentalmente por las aguas superficiales que vienen desde la zona mineralizada y desde las alteraciones hidrotermales de basalto. La oxidación de los minerales sulfurados y factores tales como el clima y los desniveles del terreno. controlan las interacciones agua-roca que generan drenaje ácido de mina (AMD), que finalmente afecta y define la calidad del agua del lago. Pirita y calcopirita constituyen una casi interminable fuente de sulfuros que permite la formación de una variedad de fases de minerales secundarios de hierro y cobre. Los ensamblajes de minerales secundarios en la zona son principalmente sulfatos de hierro, cobre y magnesio mientras que el ensamblaje en las orillas del lago es dominado por sulfatos minerales conteniendo aluminio, magnesio, calico y sodio. Ceerca de las orillas del lago, las sales de hierro altamente solubles se disuelven en el agua del lago incrementado su contenido en hierro. Otras sales menos solubles y más estables persisten en el ambiente de las orillas del lago. La precipitación y disolución de sales eflorescentes y, en menor medida, la degradación oxidativa de los minerales remeantes, produce AMD adicional. Debido al permanente ciclo de precipitación y disolución de mineral, el lago tiene un bajo pH (≈3) y contiene altas concentraciones de algunos contaminantes. Los procesos que contribuyen a la formación de ensamblajes de mineral eflorescente y el impacto sobre las aguas del lago y en el sistema geoquímico completo, es un típico ejemplo de formación de minerales secundarios en depósitos masivos de minerales sulfurados Cu-pirita tipo Chipre.

塞浦路斯型矿床的次生硫酸盐矿物(Apliki , Cyprus):矿物学及矿坑湖水化学特征

摘要

Apliki开采大型塞浦路斯型硫化物铜矿,铜矿开采一直持续到20世纪70年代中期。废弃矿坑汇集了流经周边矿化带和热液蚀变玄武岩区的地表径流而形成矿坑湖。硫化物氧化及气候、地形等水-岩作用控制因素影响着矿山酸性废水(AMD)形成和湖水水质。黄铁矿和黄铜矿不断形成次生铁、铜矿。矿床内的次生矿物组合为主要为铁、铜和镁硫酸盐,而矿坑湖岸的次生矿物组合主要为镁、钙、钠和铝硫酸盐。在湖岸地区,硫酸铁盐易溶于湖水,湖水铁含量升高。其它溶解性较低的盐类性质稳定,滞留于矿坑湖岸。风化盐类的沉淀和溶解以及残余矿物的微弱风化促进更多酸性矿山废水(AMD)生成。由于矿物不断的溶解和沉淀,湖水PH值较低(≈3),污染物浓度较高。塞浦路斯型大型黄铁(铜)矿典型的次生风化作用为风化矿物聚集并影响湖水水质及整体地球化学环境的过程。

Notes

Acknowledgments

This study of the Apliki ore deposit was partially funded by the “Papadakis Scholarship Foundation” and a research grant to Prof. N. Skarpelis by the Special Account for Research Grants (Kapodistrias Program) of the University of Athens. The authors acknowledge “Hellenic Copper Mines Ltd.”, and especially its Director General, Mr. Konstantinos Xydas, for hospitality and logistical support, as well as Dr. Nicos Adamides, Senior Geologist, for his fieldwork support and for being a constant source of information and data on the Troodos Ophiolite Complex. We also thank Mr. Evangelos Michaelidis, Department of Economic Geology and Geochemistry, University of Athens, for his assistance with SEM work, and Assistant Professor Maria Perraki, National Technical University of Athens, for a very preliminary mineralogical identification of sulphate minerals by RAMAN Spectroscopy.

Supplementary material

10230_2016_398_MOESM1_ESM.docx (27 kb)
Supplementary material 1 (DOCX 27 kb)
10230_2016_398_MOESM2_ESM.pdf (308 kb)
Supplemental Figure 1 Field occurrences of efflorescent salts: (a) stagnant waters in the mineralized zone; (b and d) efflorescent salt blooms at the lakeshore; (c and e) efflorescent blooms close to the dense sulphide stockwork, and; (f) on the walls of the mineralized zone directly on exposed ore surfaces. (PDF 308 kb)
10230_2016_398_MOESM3_ESM.pdf (39 kb)
Supplemental Figure 2 BSE-SEM images of (a) copper-sodium sulphates and (b) langite. (PDF 39 kb)
10230_2016_398_MOESM4_ESM.pdf (121 kb)
Supplemental Figure 3 BSE-SEM images of pickeringite (acicular to hairlike crystals) and magnesium sulphates (whitish platy crystals). (PDF 120 kb)
10230_2016_398_MOESM5_ESM.pdf (95 kb)
Supplemental Figure 4 Stability fields of magnesium efflorescence minerals as a function of temperature and relative humidity (Archer and Rard 1998; Chou and Seal 2003, 2007; Dekock 1986; Vant Hoff et al. 1912; Wagman et al. 1982; reproduced with the permission of Geochimica et Cosmochimica Acta, from Grevel and Majzlan 2009). (PDF 95 kb)
10230_2016_398_MOESM6_ESM.pdf (84 kb)
Supplemental Figure 5 Gypsum solubility as a function of temperature; reproduced with the permission of the Hydrometallurgy, from Azimi and Papangelakis 2010. (PDF 83 kb)
10230_2016_398_MOESM7_ESM.pdf (205 kb)
Supplemental Figure 6 a Stability diagram of chalcanthite, brochantite, and antlerite (80 °C); reproduced with the permission of the Mineralogical Society of Great Britain & Ireland, from Yoder et al. 2007. b Stability fields of chalcanthite-bonattite as a function of temperature and relative humidity (%); reproduced with the permission of the American Mineralogist, from Chou et al. 2002. (PDF 204 kb)
10230_2016_398_MOESM8_ESM.docx (24 kb)
Supplemental Table 1 Raman peaks identified for the major efflorescent salts (numbers are in wave numbers [cm-1]) in the Apliki mine. (DOCX 24 kb)

References

  1. Adamides NG (1984) Cyprus volcanogenic sulphide deposits in relation to their environment of formation. Unpublished Ph.D. Thesis, University of Leicester, UKGoogle Scholar
  2. Adamides NG (2010) Mafic-dominated volcanogenic sulphide deposits in the Troodos Ophiolite, Cyprus, part 1—the deposits of the Solea Graben. T I Min Metall B 119(2):65–77Google Scholar
  3. Al-Jibbouri S, Strege C, Ulrich J (2002) Crystallization kinetics of epsomite influenced by pΗ-value and impurities. J Cryst Growth 236:400–406CrossRefGoogle Scholar
  4. Alpers CN, Nordstrom DK, Thompson JM (1994) Seasonal variations of Zn/Cu ratios in acid mine water from Iron Mountain, California. In: Alpers CN, Blowes, DW (eds) Environmental geochemistry of sulphide oxidation, vol 550. American Chemical Society Symposium Series, pp 324–344Google Scholar
  5. Alwan AK, Williams PA (1979) Mineral formation from aqueous solution, part ii, the stability of langite, Cu4SO4(OH)6·H2O. Transit Metal Chem 4:319–322CrossRefGoogle Scholar
  6. Antivachis DN (2014) Ore deposit geology and environmental impacts from exploitation of the Apliki mine, Skouriotissa mining district, Cyprus. Unpublished Ph.D. Thesis, Department of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, GreeceGoogle Scholar
  7. Bandy MC (1938) Mineralogy of three sulphate deposits at Northern Chile. In: Nordstrom DK (ed) The Effect of sulphate on aluminium concentrations in natural waters: Some stability relations in the system Al2O3–SO3–H2O at 298 K. Geochim Cosmochim Acta, vol 4, pp 681–692Google Scholar
  8. Bigham JM, Nordstrom DK (2000) Iron and aluminum hydroxysulphates from acid sulphate waters. Rev Miner Geochem 40(1):351–403CrossRefGoogle Scholar
  9. Blowes DW, Ptacek CJ, Jambor JL, Weisener CG (2004) The geochemistry of acid mine drainage. Treatise Geochem 9:149–204Google Scholar
  10. Buckby T, Black S, Coleman ML, Hodson ME (2003) Fe-sulphate-rich evaporative mineral precipitates from the Rio Tinto, Southwest Spain. Miner Mag 67(2):263–278CrossRefGoogle Scholar
  11. Charalambides A, Kyriacou E, Constantinou C, Baker J, van Os B, Gurnari G, Shiathas A, van Dijk P, van der Meer F (1998) Mining waste management on Cyprus: assessment, strategy development and implementation. EU DG-XT-LIFE project-94/CYJB2J1CYI0977IMED, final report II, hydrochemical and geochemical data, geological survey department, NicosiaGoogle Scholar
  12. Chou I-M, Seal RR (2003) Acquisition and evaluation of thermodynamic data for morenosite–retgersite equilibria at 0.1 MPa. Am Miner 88(11–12):1943–1948CrossRefGoogle Scholar
  13. Chou I-M, Seal RR II (2007) Magnesium and calcium sulphate stabilities and the water budget of Mars. J Geophys Res 112(E11):10CrossRefGoogle Scholar
  14. Chou I-M, Seal RR, Hemingway BS (2002) Determination of melanterite-rozenite and chalcanthite-bonattite equilibria by humidity measurements at 0.1 MPa. Am Miner 87:108–114CrossRefGoogle Scholar
  15. Cody AD, Grammer TR (1979) Magnesian halotrichite from White Island. New Zealand. J. Geol. Geophys 22(4):495–498CrossRefGoogle Scholar
  16. Dold B (2014) Submarine tailings disposal (STD)—a review. Minerals 4:642–666CrossRefGoogle Scholar
  17. Freyer D, Voigt W (2003) Crystallization and phase stability of CaSO4 and CaSO4-based salts. Monatsh Chem 134:693–719CrossRefGoogle Scholar
  18. Galanopoulos E (2012) Weathering processes of massive sulfide Cu-FeS2 mineralization and mining waste of the abandoned Mathiatis mine, Cyprus and environmental impacts: neutralization tests of acid mine drainage. M.Sc Thesis, Department of Economic Geology and Geochemistry, National and Kapodistrian University of Athens, GreeceGoogle Scholar
  19. Gray NF (1997) Environmental impact and remediation of acid mine drainage: a management problem. Environ Geol 30(1/2):62–71CrossRefGoogle Scholar
  20. Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulphate minerals associated with acid drainage in the Eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431CrossRefGoogle Scholar
  21. Hill AE (1937) The transition temperature of gypsum to anhydrite. J Am Chem Soc 59:2242–2244CrossRefGoogle Scholar
  22. Hudson-Edwards KA, Edwards SJ (2005) Mineralogical controls on storage of As, Cu, Pb and Zn at the abandoned Mathiatis massive sulphide mine, Cyprus. Miner Mag 69:695–706CrossRefGoogle Scholar
  23. Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulphate salts from sulfide mineral oxidation. Rev Miner Geochem 40(1):303–350CrossRefGoogle Scholar
  24. Jerz JK (2002) Geochemical reactions in unsaturated mine wastes. Ph.D. Thesis, Blacksburg, VA, University Libraries, Virginia Polytechnic Institute and State University, vol OCLC, p 49698307Google Scholar
  25. Jerz JK, Rimstidt JD (2003) Efflorescent iron sulphate minerals: paragenesis, relative stability. Am Miner 88:1919–1932CrossRefGoogle Scholar
  26. Keith DC, Runnells DD, Esposito KJ, Chermak JA, Levy DB, Hannula SR, Watts M, Hall L (2001) Geochemical models of the impact of acidic groundwater and evaporative salts on Boulder Creek at Iron Mountain, California. Appl Geochem 16:947–961CrossRefGoogle Scholar
  27. Komnitsas K, Xenidis A, Adam K (1995) Oxidation of pyrite and arsenopyrite in sulphidic spoils in Lavrion. Miner Eng 8(12):1443–1454CrossRefGoogle Scholar
  28. Leduc EMS, Peterson RC, Wang R (2009) The crystal structure and hydrogen bonding of synthetic conyaite, Na2Mg(SO4)2·5H2O. Am Mineral 94:1005–1011CrossRefGoogle Scholar
  29. Lottermoser BG (2010) Mine wastes: characterization, treatment, and environmental impacts, 3rd edn. Springer, BerlinCrossRefGoogle Scholar
  30. Lu M (2004) Pit lakes from sulphide ore mining, geochemical and limnological characterization before treatment, after liming and sewage sludge treatments. Unpublished Ph.D. Thesis, Lulea University of Technology, Department of Chemical Engineering and GeosciencesGoogle Scholar
  31. Lydon JW, Galley A (1986) Chemical and mineralogical zonation of the Mathiati alteration pipe, Cyprus and its genetic significance. In: Ixer RA, Neary CR, Prichard HM (eds) Gallagher MJ. Metallogeny of basic and ultrabasic rocks London, Inst Min Metall, pp 49–68Google Scholar
  32. Mandarino JA (1999) Fleischer’s glossary of mineral species. Mineralogical record, TucsonGoogle Scholar
  33. Marion GM, Kargel JS, Catling DC (2008) Modeling ferrous-ferric iron chemistry with application to Martian surface geochemistry. Geochim Cosmochim Act 72:242–266CrossRefGoogle Scholar
  34. Martin R, Rodgers KA, Browne PRL (1999) The nature and significance of sulphate-rich aluminous efflorescences from the Te Kopia geothermal field, Taupo volcanic zone, New Zealand. Miner Mag 63:413–419CrossRefGoogle Scholar
  35. Nordstrom DK (1999) Efflorescent salts and the effects on water quality and mine plugging. Mine Water Environ IMWA Int Congress, Sevilla 2:543–546Google Scholar
  36. Nordstrom DK, Alpers CN (1999a) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, part A: processes, techniques and health issues. Rev Econ Geol, vol 6A, pp 133–160Google Scholar
  37. Nordstrom DK, Alpers CN (1999b) Negative pH, efflorescent mineralogy, and consequences for environmental restoration at the Iron Mountain Superfund site, California. Proc Natl Acad Sci USA 96:3455–3462CrossRefGoogle Scholar
  38. Ranville M, Rough D, Flegal AR (2004) Metal attenuation at the abandoned Spenceville copper mine. Appl Geochem 19(5):803–815CrossRefGoogle Scholar
  39. Sánchez-España J, Lopez Pamo E, Santofimia Pastor E, Aduvire O, Reyes J, Beretti D (2005) Acid mine drainage in the Iberian Pyrite Belt (Odiel river watershed, Huelva, SW Spain): geochemistry, mineralogy and environmental implications. Appl Geochem 20:1320–1356CrossRefGoogle Scholar
  40. Sánchez-España J, Lopez Pamo E, Santofimia Pastor E, Diez Ercilla M (2008) The acidic mine pit lakes of the Iberian Pyrite Belt: an approach to their physical limnology and hydrogeochemistry. Appl Geochem 23:1260–1287CrossRefGoogle Scholar
  41. Spencer RJ (2000) Sulphate minerals in evaporite deposits, reviews in mineralogy and geochemistry. Miner Soc Am 40(1):173–192Google Scholar
  42. Triantafyllidis S, Skarpelis N (2006) Mineral formation in an acid pit lake from a high-sulphidation ore deposit: Kirki, NE Greece. J Geochem Explor 88:68–71CrossRefGoogle Scholar
  43. Triantafyllidis S, Skarpelis N, Komnitsas K (2007) Environmental characterization and geochemistry of Kirki, Thrace, NE Greece, abandoned flotation tailing dumps. Environ Forensics 8(4):351–359CrossRefGoogle Scholar
  44. U.S. Environmental Protection Agency (2011) Drinking water standards and health advisories, EPA 820-R-11-002. Office of Water U.S. Environmental Protection Agency, WashingtonGoogle Scholar
  45. Valente TM, Leal Gomes C (2009) Occurrence properties and pollution potential of environmental minerals in acid mine drainage. Sci Total Environ 407:1135–1152CrossRefGoogle Scholar
  46. Varga RJ, Moores EM (1985) Spreading structure of the Troodos ophiolite, Cyprus. Geology 13:846–850CrossRefGoogle Scholar
  47. Velasco F, Alvaro A, Suarez S, Herrero J-M, Yusta I (2005) Mapping Fe-bearing hydrates sulphate minerals with short wave infrared (SIR) Spectral analysis at San Miguel mine environment, Iberian Pyrite Belt (SW Spain). J Geochem Explor 87(2):45–72CrossRefGoogle Scholar
  48. Yoder CH, Agee TM, Ginion KE, Hofmann AE, Ewanichak JE, Schaeffer CD Jr, Carroll MJ, Schaeffer RW, McCaffrey PF (2007) The relative stabilities of the copper hydroxyl sulphates. Miner Mag 71(5):571–577CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Danae N. Antivachis
    • 1
  • Elias Chatzitheodoridis
    • 2
  • Nikolaos Skarpelis
    • 1
  • Konstantinos Komnitsas
    • 3
  1. 1.Department of Economic Geology and Geochemistry, Faculty of Geology and Geoenvironment, School of ScienceNational and Kapodistrian University of AthensAthensGreece
  2. 2.Laboratory of Mineralogy, Petrology and Economic Geology, Department of Geological Sciences, School of Mining and Metallurgical EngineeringNational Technical University of AthensAthensGreece
  3. 3.School of Mineral Resources EngineeringTechnical University of CreteChaniaGreece

Personalised recommendations