Abstract
This work describes the geochemistry, mineralogy, and mobility of selected metals (Cu, Pb, Zn) and metalloids (As, Sb) in a tailings impoundment in the village of Slovinky (eastern Slovakia). The tailings were covered unevenly by slag from processing of Cu wastes. The tailings and slag both have negligible potential for acid mine drainage formation, thus neutral to alkaline conditions predominate, as shown by high paste pH values of the tailings (7.66–8.83) and neutral drainage, with pH values above 7.50. Weathering of the most abundant primary sulfides (chalcopyrite, pyrite, and arsenopyrite) releases low concentrations of As, Cu, Pb, Sb, and Zn from the tailings impoundment and in leachates from a 150 days pot leaching experiment. This is explained mostly by formation of secondary ferric oxyhydroxides (as weathering rims on the surfaces of primary sulfides or individual grains),which incorporate 4.09 wt% of As, 17.2 wt% of Cu, 1.20 wt% of Pb, 15.0 wt% of Sb, and 1.59 wt% of Zn. Elevated contents of metals and metalloids in weathering rims formed on slag components like glasses, metallic grains, and residues of blast-furnace lining indicate that secondary solid phases are controlling the mobility of the potentially toxic elements. Generally, with the exception of Cu, no separate secondary compounds of the metals or metalloids were found. The potentially toxic elements are mainly immobilized by ferric oxyhydroxides and other iron mineral phases in the tailings impoundment.
Zusammenfassung
Diese Arbeit beschreibt die Geochemie, Mineralogie und Mobilität ausgewählter Metalle (Cu, Pb, Zn) und Halbmetalle (As, Sb) in einer Aufstauung im Dorf Slovinky (Ostslowakei). Die Halden wurden ungleichmäßig von Schlacke aus der Verarbeitung von Kupfer aufgeschüttet. Die Aufbereitungsrückstände und die Schlacke haben beide vernachlässigbare Potentiale für die Bildung saurer Wässer. Die neutralen bis alkalischen Bedingungen überwiegen, wie durch pH-Werte im Abraum (7,66 bis 8,83) und neutralen Sickerwässern mit pH-Werten oberhalb von 7,50 gezeigt wurde. Verwitterung der häufigsten primären Sulfide (Kupferkies, Pyrit, Arsenopyrit, usw.) zeigte niedrige Konzentrationen an As, Cu, Pb, Sb und Zn aus der Haldenaufstauung und der Sickerwässer aus dem 150 d Batch-Auslaugung-Versuche. Dies ist vor allem durch die Bildung von Sekundärferrioxyhydroxide (als Witterungs Ränder auf den Oberflächen der primären Sulfide oder einzelner Körner), die 4,09 Gewichts- % As, 17,2 Gew- % Cu, 1,20 Gew- % Pb, 15,0 Gew- % Sb und 1,59 Gewichts- % Zn zurück zuführen. Erhöhte Gehalte an Metallen und Metalloiden an Verwitterungsrändern der Schlackenkomponenten wie Gläser, metallischen Körnchen und Reste von Hochofenauskleidungen zeigen, dass sekundäre Festphasen zur Steuerung der Mobilität der potentiell toxischen Elementen verantwortlich sind. Im Allgemeinen (mit der Ausnahme von Cu) sind keine separaten Nebenverbindungen der Metalle oder Metalloide gefunden worden. Die potentiell toxischen Elemente werden vor allem von Eisen-III-Oxyhydroxiden und anderen Eisenmineralphasen in der Haldenaufstauung immobilisiert.
Resumen
Este trabajo describe la geoquímica, la mineralogía y la movilidad de metales seleccionados (Cu, Pb, Zn) y metaloides (As, Sb) en un embalse de colas en la localidad de Slovinky (al este de Eslovaquia). Las colas fueron cubiertas en forma no uniforme con escoria proveniente del procesamiento de deshechos de Cu. Las colas y la escoria tienen escaso potencial de generación de drenaje ácido, ya que predominan condiciones neutras y alcalinas tal cual muestran los altos valores del pH pasta de las colas (7,66-8,83) y el drenaje neutro con valores de pH arriba de 7,50. La degradación de los sulfuros primarios más abundantes (calcopirita, pirita y arsenopirita) libera bajas concentraciones de As, Cu, Pb, Sb y Zn desde los embalses de cola y en los lixiviados, desde los 150 días en los experimentos de lixiviación en maceta. Esto se explica principalmente por la formación de oxohidróxidos secundarios de hierro(III) (como anillos de corrosión sobre las superficies de los sulfuros primarios o granos individuales), que incorporan 4,09 % en peso de As, 17,2 % en peso de Cu, 1,20 % en peso de Pb, 15,0 % en peso de Sb y 1,59 % en peso de Zn. Los contenidos elevados de metales y metaloides en anillos de corrosión formados sobre los componentes de la escoria como vidrios, granos metálicos y residuos de revestimiento de altos hornos, indican que fases sólidas secundarias están controlando la movilidad de elementos potencialmente tóxicos. Generalmente, con la excepción de Cu, no se encontraron compuestos secundarios separados de los metales y metaloides. Los elementos potencialmente tóxicos son principalmente inmovilizados por oxohidroxos férricos y otras fases de minerales de hierro en los embalses de colas.
摘要
文章研究了斯洛伐克东部Slovinky村尾矿库某些金属(铜、铅、锌)和类金属(砷、锑)的地球化学、矿物学和迁移特征。尾矿为铜矿提炼矿渣不均匀覆盖。尾矿和矿渣几乎不产生酸性矿山废水,尾矿的糊状pH值为7.66 ~ 8.83,排放废水呈中性,因此尾矿库为pH值大于7.50的中性和碱性环境。大量原生硫化物(黄铜矿、黄铁矿和毒砂)的风化使尾矿库和150天室内淋溶液含有低浓度的砷、铜、铅、锑和锌。主要原因是原生硫化矿物或颗粒边缘风化形成三价铁氢氧化物所致,它们能够分别吸收1.59 %、17.2 %、1.20 %、15.0 %和1.59 %的砷、铜、铅、锑和锌。矿渣主要由玻璃、金属颗粒和高炉内衬残渣组成,矿渣颗粒风化边缘金属和类金属含量的升高表明次生固相矿物控制着尾矿库内潜在有毒元素的运移。除铜以外,未发现其它独立的金属及类金属次生矿物。潜在有毒元素主要为三价铁氢氧化物和其它状态铁化学物所束缚。
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Product 14:1139–1145. doi:10.1016/j.jclepro.2004.09.006
Alter H (2005) The composition and environmental hazard of copper slags in the context of the Basel Convention. Resour Conserv Recy 43:353–360. doi:10.1016/j.resconrec.2004.05.005
Bajtoš P (2012) Mass flux balance of contaminants at mountain regions influenced by mining activity on example of the Dubrava Sb deposit and the Slovinky Cu deposit. Podzemná Voda 18:110–122 (In Slovak with English abstract and summary)
Balintova M, Singovszka E, Vodicka R, Purcz P (2015) Statistical evaluation of dependence between pH, metal contaminants, and flow rate in the AMD-affected Smolnik Creek. Mine Water Environ. doi:10.1007/s10230-014-0324-2
Berger AC, Bethke CM, Krumhansl JL (2000) A process model of natural attenuation in drainage from a historic mining district. Appl Geochem 15:655–666. doi:10.1016/S0883-2927(99)00074-8
Bird G, Brewer PA, Macklin MG, Balteanu D, Driga B, Serban M, Zaharia S (2003) The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Appl Geochem 18:1583–1595. doi:10.1016/S0883-2927(03)00078-7
Blowes DW, Jambor JL, Hanton-Fong CJ, Lortie L, Gould WD (1998) Geochemical, mineralogical and microbiological characterizationof a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Appl Geochem 13:687–705. doi:10.1016/S0883-2927(98)00009-2
Brookfield AE, Blowes DW, Mayer KU (2006) Integration of field measurements and reactive transport modelling to evaluate contaminant transport at a sulfide mine tailings impoundment. J Contam Hydrol 88:1–22. doi:10.1016/j.jconhyd.2006.05.007
Bruker (2010a) DIFFRACplus EVA. http://www.brukeraxs.com/eva.html. Accessed 6 October 2013
Bruker (2010b) DIFFRACplus TOPAS. http://www.bruker-axs.de/topas.html. Accessed 6 October 2013
Chovan M, Háber M, Jeleň S, Rojkovič I (1994) Ore textures in theWestern Carpathians. Slovak Academic Press, Bratislava
Dixit S, Hering JG (2003) Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ Sci Technol 37:4182–4189. doi:10.1021/es030309t
Dold B, Fontboté L (2002) A mineralogical and geochemical study of element mobility in sulfide mine tailings of Fe oxide Cu–Au deposits from the Punta del Cobre belt, northern Chile. Chem Geol 189:135–163. doi:10.1016/S0009-2541(02)00044-X
EN 12457-2 (2002) Characterisation of waste-leaching-compliance test for leaching of granular waste materials and sludges—part 2: one stage batch test at a liquid to solid ratio of 10 L/kg for materials with particle size below 4 mm (without or with size reduction). The European Committee for Standardization (CEN), Brussels
Erdem M, Özverdi A (2005) Lead adsorption from aqueous solution onto siderite. Sep Purif Technol 42:259–264. doi:10.1016/j.seppur.2004.08.004
Ettler V, Johan Z, Kříbek B, Šebek O, Mihaljevič M (2009) Mineralogy and environmental stability of slags from the Tsumeb smelter, Namibia. Appl Geochem 24:1–15. doi:10.1016/j.apgeochem.2008.10.003
Final report (2012) Influence of mining of mineral resources on the environment. State Geological Institute of Dionyz Stur, Bratislava (in Slovak) http://dionysos.gssr.sk/cmsgf/files/Hodn_monitor_2012/04_Vplyv_tazby_2012.pdf. Accessed 15 June 2015
Frau F, Ardau C, Fanfani L (2009) Environmental geochemistry and mineralogy of lead at the old mine area of Baccu Locci (south-east Sardinia, Italy). J Geochem Explor 100:105–115. doi:10.1016/j.gexplo.2008.01.005
Gaboriaud F, Ehrhardt J-J (2003) Effects of different crystal faces on the surface charge of colloidal goethite (α-FeOOH) particles: an experimental and modeling study. Geochim Cosmochim Acta 67:967–983. doi:10.1016/S0016-7037(02)00988-2
Gee C, Ramsey MH, Maskall J, Thornton I (1997) Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization of lead. J Geochem Explor 58:249–257. doi:10.1016/S0375-6742(96)00062-3
Gitari WM, Fatoba OO, Petrik LF, Vadapalli VRK (2009) Leaching characteristics of selected South African fly ashes: effect of pH on the release of major and trace species. J Environ Sci Health A 44:206–220. doi:10.1080/10934520802539897
Gorai B, Jana RK, Premchand M (2003) Characteristics and utilisation of copper slag—a review. Resour Conserv Recy 39:299–313. doi:10.1016/S0921-3449(02)00171-4
Goumih A, El Adnani M, Hakkou R, Benzaazoua M (2013) Geochemical behavior of mine tailings and waste rock at the abandoned Cu–Mo–W Azegour mine (Occidental High Atlas, Morocco). Mine Water Environ 32:121–132. doi:10.1007/s10230-013-0221-0
Grangeia C, Ávila P, Matias M, Ferreira da Silva E (2011) Mine tailings integrated investigations: the case of Rio tailings (Panasqueira Mine, Central Portugal). Eng Geol 123:359–372. doi:10.1016/j.enggeo.2011.10.001
Grecula P, Abonyi A, Abonyiová M, Antáš J, Bartalský B, Bartalský J, Dianiška I, Drnzík E, Ďuďa R, Gargulák M, Gazdačko Ľ, Hudáček J, Kobulský J, Lörincz L, Macko J, Návesňák D, Németh Z, Novotný L, Radvanec M, Rojkovič I, Rozložník O, Varček C, Zlocha J (1995) Mineral deposits of the Slovak Ore Mts. Geokomplex, Bratislava (in Slovak with an English summary)
Guo H, Stüben D, Berner Z (2007a) Removal of arsenic from aqueous solution by natural siderite and hematite. Appl Geochem 22:1039–1051. doi:10.1016/j.apgeochem.2007.01.004
Guo H, Stüben D, Berner Z (2007b) Adsorption of arsenic(III) and arsenic(V) from groundwater using natural siderite as the adsorbent. J Colloid Interf Sci 315:47–53. doi:10.1016/j.jcis.2007.06.035
Hasaj J, Šťastný V (1983) Slovinky—stabilization and reclamation of the impoundment, supplementing engineering–geological research. IGHP, Košice (in Slovak)
Heikkinen PM, Räisänen ML, Johnson RH (2009) Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: acid mine drainage versus neutral mine drainage. Mine Water Environ 28:30–49. doi:10.1007/s10230-008-0056-2
Hiemstra T, Van Riemsdijk WH (2009) A surface structural model for ferrihydrite I: sites related to primary charge, molar mass, and mass density. Geochim Cosmochim Acta 73:4423–4436. doi:10.1016/j.gca.2009.04.032
Hiller E, Lalinská B, Chovan M, Jurkovič Ľ, Klimko T, Jankulár M, Hovorič R, Šottník P, Fľaková R, Ženišová Z, Ondrejková I (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl Geochem 27:598–614. doi:10.1016/j.apgeochem.2011.12.005
Hiller E, Petrák M, Tóth R, Lalinská-Voleková B, Jurkovič Ľ, Kučerová G, Radková A, Šottník P, Vozár J (2013) Geochemical and mineralogical characterization of a neutral, low-sulfide/high-carbonate tailings impoundment, Markušovce, eastern Slovakia. Environ Sci Pollut Res 20:7627–7642. doi:10.1007/s11356-013-1581-5
Jambor JL, Dutrizac JE, Groat LA, Raudsepp M (2002) Static tests of neutralization potentials of silicate and aluminosilicate minerals. Environ Geol 43:1–17. doi:10.1007/s00254-002-0615-y
Jurjovec J, Ptacek CJ, Blowes DW (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim Cosmochim Acta 66:1511–1523. doi:10.1016/S0016-7037(01)00874-2
Khorasanipour M, Eslami A (2014) Hydrogeochemistry and contamination of trace elements in Cu–porphyry mine tailings: a case study from the Sarcheshmeh mine, SE Iran. Mine Water Environ 33:335–352. doi:10.1007/s10230-014-0272-x
Kučerová G, Ozdín D, Lalinská-Voleková B (2013) Primary low–temperature delafossite CuFeO2 from mine tailing Slovinky (Slovakia). Bull Mineral Petrolog Odd Nár Muz (Praha) 21:78–83 (in Slovak, with English summary)
Kučerová G, Majzlan J, Lalinská-Voleková B, Radková A, Bačík P, Michňová J, Šottník P, Jurkovič Ľ, Klimko T, Steininger R, Göttlicher J (2014) Mineralogy of neutral mine drainage in the tailings of siderite–Cu ores in eastern Slovakia. Can Mineral 52:779–798. doi:10.3749/canmin.1400020
Lalinská-Voleková B, Majzlan J, Klimko T, Chovan M, Kučerová G, Michňová J, Hovorič R, Göttlicher J, Steininger R (2012) Mineralogy of weathering products of Fe–As–Sb mine wastes and soils at several Sb deposits in Slovakia. Can Mineral 50:481–500. doi:10.3749/canmin.50.2.481
Landscape Atlas of the Slovak Republic (2002) Ministry of Environment of the Slovak Republic and Slovak Environmental Agency, 1st edn. Bratislava
Leuz AK, Mönch H, Johnson CA (2006) Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ Sci Technol 40:7277–7282. doi:10.1021/es061284b
Lin Z (1997) Mineralogical and chemical characterization of wastes from the sulfuric acid industry in Falun, Sweden. Environ Geol 30:152–162. doi:10.1007/s002540050142
Lindsay MBJ, Condon PD, Jambor JL, Lear KG, Blowes DW, Ptacek CJ (2009) Mineralogical, geochemical, and microbial investigation of a sulfide-rich tailings deposit characterized by neutral drainage. Appl Geochem 24:2212–2221. doi:10.1016/j.apgeochem.2009.09.012
Lottermoser BG (2002) Mobilization of heavy metals from historical smelting slag dumps, north Queensland, Australia. Mineral Mag 66:475–490. doi:10.1180/0026461026640043
Lottermoser BG (2007) Mine wastes. Characterization, treatment, environmental impacts, 2nd edn. Springer, Berlin
Majzlan J, Lalinská B, Chovan M, Bläß U, Brecht B, Göttlicher J, Steininger R, Hug K, Ziegler S, Gescher J (2011) A mineralogical, geochemical, and microbiological assessment of the antimony- and arsenic-rich neutral mine drainage tailings near Pezinok, Slovakia. Am Mineral 96:1–13. doi:10.2138/am.2011.3556
McGregor RG, Blowes DW, Jambor JL, Robertson WD (1998) The solid-phase controls on the mobility of heavy metals at the Copper Cliff tailings area, Sudbury, Ontario, Canada. J Contam Hydrol 33:247–271. doi:10.1016/S0169-7722(98)00060-6
Miller S, Robertson A, Donahue T (1997) Advances in acid drainage prediction using the net acid generation (NAG) test. Proceedings of 4th international conference on acid rock drainage, vol II, Vancouver, pp 535–549
Nagy AS, Szabó J, Vass I (2013) Trace metal and metalloid levels in surface water of Marcal River before and after the Ajka red mud spill, Hungary. Environ Sci Pollut Res 20:7603–7614. doi:10.1007/s11356-013-2071-5
Nordstrom DK, Alpers CN (1999) Geochemistry of acid mine waters. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits. Part A. Processes, methods and health issues. Rev Econ Geol, vol 6A. Soc of Economic Geologists, Littleton, CO, USA, pp 133–160
Othmani MO, Souissi F, Bouzahzah H, Bussière B, da Silva EF, Benzaazoua M (2015) The flotation tailings of the former Pb-Zn mine of Touiref (NW Tunisia): mineralogy, mine drainage prediction, base-metal speciation assessment and geochemical modeling. Environ Sci Pollut Res 22:2877–2890. doi:10.1007/s11356-014-3569-1
Parkhurst DL, Appelo CAJ (1999) User’s guide to PHREEQC: a computer program for speciation, reaction-path, 1-D transport, and inverse geochemical calculations. US Geological Survey Water-Resources Investigations Report 99-4259
Parsons MB, Bird DK, Einaudi MT, Alpers CN (2001) Geochemical and mineralogical controls of trace element release from the Penn Mine base–metal slag dump. Appl Geochem 16:1567–1593. doi:10.1016/S0883-2927(01)00032-4
Piatak NM, Seal RR II, Hammarstrom JM (2004) Mineralogical and geochemical controls on the release of trace elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Appl Geochem 19:1039–1064. doi:10.1016/j.apgeochem.2004.01.005
Piatak NM, Parsons MB, Seal RR II (2015) Characteristics and environmental aspects of slag: a review. Appl Geochem 57:236–266. doi:10.1016/j.apgeochem.2014.04.009
Piovarcsy K, Ráchela R (1998) Slovinky-Gelnica ore deposit-complex evaluation of Cu, an exploration (final report). Ministry of Environment of the Slovak Republic, Bratislava (in Slovak)
Prasanna MV, Chidambaram S, Senthil Kumar G, Ramanathan AL, Nainwal HC (2010) Hydrogeochemical assessment of groundwater in Neyveli Basin, Cuddalore District, South India. Arab J Geosci 4:319–330. doi:10.1007/s12517-010-0191-5
Radvanec M, Grecula P, Žák K (2004) Siderite mineralization of the Gemericum superunit (Western Carpathians, Slovakia): review and a revised genetic model. Ore Geol Rev 24:267–298. doi:10.1016/j.oregeorev.2003.07.004
Rapant S, Cvečková V, Dietzová Z, Khun M, Letkovičová M (2009) Medical geochemistry research in Spišsko-Gemerské Rudohorie Mts., Slovakia. Environ Geochem Health 31:11–25. doi:10.1007/s10653-008-9152-2
Richards LA (1954) Diagnosis and improvement of saline and alkali soils. Agricultural Handbook No 60. US Dept of Agriculture, Washington DC
Salvarredy-Aranguren MM, Probst A, Roulet M, Isaure MP (2008) Contamination of surface waters by mining wastes in the MilluniValley (Cordillera Real, Bolivia): mineralogical and hydrological influences. Appl Geochem 23:1299–1324. doi:10.1016/j.apgeochem.2007.11.019
Sarmiento AM, DelValls A, Nieto JM, Salamanca MJ, Caraballo MA (2011) Toxicity and potential risk assessment of a river polluted by acid mine drainage in the Iberian Pyrite Belt (SW Spain). Sci Total Environ 409:4763–4771. doi:10.1016/j.scitotenv.2011.07.043
Sima M, Dold B, Frei L, Senila M, Balteanu D, Zobrist J (2011) Sulfide oxidation and acid mine drainage formation within two active tailings impoundments in the Golden Quadrangle of the Apuseni Mountains, Romania. J Hazard Mater 189:624–639. doi:10.1016/j.jhazmat.2011.01.069
Simate SG, Ndlovu S (2014) Acid mine drainage: challenges and opportunities. J Environ Chem Eng 2:1785–1803. doi:10.1016/j.jclepro.2004.09.006
Skousen J, Renton J, Brown H, Evans P, Leavitt B, Brady K, Cohen L, Ziemkiewicz P (1997) Neutralization potential of overburden samples containing siderite. J Environ Qual 26:673–681. doi:10.2134/jeq1997.00472425002600030012x
Souissi R, Souissi F, Chakroun HK, Bouchardon JL (2013) Mineralogical and geochemical characterization of mine tailings and Pb, Zn, and Cd mobility in a carbonate setting (Northern Tunisia). Mine Water Environ 32:16–27. doi:10.1007/s10230-012-0208-2
Sracek O, Mihaljevič M, Kříbek B, Majer V, Veselovský F (2010) Geochemistry and mineralogy of Cu and Co in mine tailings at the Copperbelt, Zambia. J Afr Earth Sci 57:14–30. doi:10.1016/j.jafrearsci.2009.07.008
STN EN ISO/IEC 17025 (2005) General requirements for the competence of testing and calibration laboratories. Slovak Office of Standards, Metrology and Testing, Bratislava (in Slovak)
Van Gerven T, Geysen D, Stoffels L, Jaspers M, Wauters G, Vandecasteele C (2005) Management of incinerator residues in Flanders (Belgium) and neighbouring countries. A comparison. Waste Manag 25:75–87. doi:10.1016/j.wasman.2004.09.002
Vrana K, Vojtaško I, Žák D, Piovarči M, Kúšiková S, Puchnerová M, Lanc J, Naštický J (2005) System for the determination and the monitoring of environmental damages caused by mining activities, informative engineering—geological research. Geokomplex Inc., Bratislava (in Slovak)
WISE Uranium Project (2013) Chronology of major tailings dam failures. http://www.wise-uranium.org/mdaf.html. Accessed 15 January 2015
Acknowledgments
We thank the two anonymous reviewers very much for their constructive comments and recommendations to improve and support the manuscript. The authors thank the Editor-in-Chief, Bob Kleinmann, and the Associate Editor, Charles A. Cravotta III, for their helpful comments and thorough reviews of the English language in this manuscript. This study was financially supported by the Slovak Research and Development Agency under the contracts No. APVV-03/VMSP-P-0115-09 and No. APVV-0344-11, and by the Scientific Grant Agency of the Ministry of Education of Slovak Republic and the Academy of Sciences (VEGA 1/0038/14). This study is also the result of the project implementation: Comenius University in Bratislava Science Park supported by the Research and Development Operational Programme funded by the ERDF. Grant Number: ITMS 26240220086.
Author information
Authors and Affiliations
Corresponding author
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Hiller, E., Tóth, R., Kučerová, G. et al. Geochemistry of Mine Tailings from Processing of Siderite–Cu Ores and Mobility of Selected Metals and Metalloids Evaluated by a Pot Leaching Experiment at the Slovinky Impoundment, Eastern Slovakia. Mine Water Environ 35, 447–461 (2016). https://doi.org/10.1007/s10230-016-0388-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10230-016-0388-2