Advertisement

Mine Water and the Environment

, Volume 34, Issue 4, pp 455–463 | Cite as

Controls on Zn Concentrations in Acidic and Neutral Mine Drainage from New Zealand’s Bituminous Coal and Epithermal Mineral Deposits

  • J. PopeEmail author
  • D. Trumm
Technical Article

Abstract

Zinc is one of the most abundant transition metals in mine water from coal mines and epithermal metal mines in New Zealand. Zinc is commonly conservative in mine drainage systems and remains soluble at concentrations that exceed guideline values for protection of aquatic ecosystems. This study presents a compilation of Zn concentrations and geochemical data from acid and neutral mine drainage sites. Geochemical modelling using PhreeqC indicates that secondary Zn minerals are unlikely to influence Zn concentrations except where Zn exceeds 100 mg/L and mine drainage pH > 7. Adsorption modelling using WHAM indicates that Zn is unlikely to be attenuated by adsorption onto Fe and Al precipitates that could form during neutralisation or oxidation of mine drainages, except when the ratio of precipitate to dissolved Zn is high (≈100 mg/L precipitate and 0.1 mg/L Zn) and the pH > 6. Instead, Zn concentration is controlled by the source minerals and their rate of dissolution and dilution, rather than precipitation of secondary Zn minerals or adsorption. At some abandoned mine sites, or mineral prospects where leachate testing has been completed, Zn (±acidity) is the main chemical parameter that must be removed before discharge to the aquatic environment. Our results and interpretations constrain options for water management at future mine sites in New Zealand where Zn is present to: active treatment, passive treatment using reducing systems, or passive treatment that incorporate CaO-bearing reagents to achieve a pH > 7. Conventional limestone-based passive treatment systems are unlikely to remove Zn because pH > 6 is seldom achieved in such systems in an acceptable reaction time. Active treatment is unlikely to be possible at sites established to clean up abandoned mines sites, and therefore passive treatment should include a reducing system to remove Zn in order to meet guidelines for protection of aquatic ecosystems.

Keywords

Solubility Adsorption Geochemical modelling 

Bestimmende Faktoren für die Zn-Konzentration in saurem und neutralem Grubenwasser Neuseeländischer Steinkohle- und epithermaler Erzlagestätten

Zusammenfassung

Zink ist eines der häufigsten Übergangsmetalle im Grubenwasser von Kohlebergwerken und Bergwerken in epithermalen Lagestätten in Neuseeland. Zink verhält sich in der Regel konservativ in Grubenwassersystemen und bleibt löslich in Konzentrationen, die die Grenzwerte für den Schutz aquatischer Ökosysteme überschreiten. Diese Studie präsentiert eine Zusammenstellung von Zn-Konzentrationen und geochemischen Daten von sauren und neutralen Grubenwässern. Geochemische Modellierung mit PhreeqC zeigt, dass sekundäre Zinkminerale die Zn-Konzentrationen wahrscheinlich nicht beeinflussen, außer wenn die Zn-Konzentration > 100 mg/L und der pH > 7 ist. Adsorptionsmodellierung unter Verwendung von WHAM zeigt, dass die Adsorption an während der Neutralisation und Oxidation gebildeter Fe- und Al-Niederschläge unwahrscheinlich ist, außer wenn das Verhältnis von Niederschlag zu gelöstem Zink hoch (≈100 mg/L Niederschlag und 0,1 mg/L Zn) und der pH > 6 ist. Stattdessen wird die Zn-Konzentration durch die Zn-haltigen Minerale der Lagerstätten, deren Auflösungsrate und Verdünnung bestimmt und weniger durch die Ausfällung von sekundären Zn-Mineralen oder Adsorption. An einigen stillgelegten Bergwerken oder Erkundungsflächen, an denen Leaching-Tests durchgeführt wurden, ist Zn (±Azidität) der hauptsächliche chemische Wasserinhaltsstoff, der vor der Ableitung in die aquatische Umwelt entfernt werden muss. Unsere Ergebnisse und Interpretationen schränken die Möglichkeiten für das Wassermanagement zukünftiger Bergwerke in Neuseeland ein, bei denen Zn eine Rolle spielt: aktive Behandlung, passive Behandlung mit reduzierenden Systemen oder passive Systeme, die CaO verwenden, um pH-Werte > 7 zu erreichen. Konventionelle passive, auf Kalkstein basierende Systeme sind wahrscheinlich nicht in der Lage, Zn zu entfernen, da pH-Werte > 6 selten in solchen Systemen in akzeptablen Reaktionszeiten erreicht werden. Aktive Behandlung ist wahrscheinlich nicht möglich an Stellen, an denen es um die Sanierung stillgelegter Bergwerksstandorte geht. Daher sollte die passive Behandlung ein reduzierendes System enthalten, um Zn zu entfernen und die Vorschriften zum Schutz aquatischer Ökosysteme einzuhalten.

Controles de las concentraciones de Zn en drenajes de mina ácidos y neutros producidos en depósitos de carbón bituminoso y en depósitos mineros epitermales en Nueva Zelanda

Resumen

Zn es uno de los metales de transición más abundantes en el agua de mina desde minas de carbón y minas metálicas epitermales en Nueva Zelanda. Zn se mantiene en drenajes de minas y permanece soluble a concentraciones que exceden los niveles guía de protección de ecosistemas acuáticos. Este estudio presenta una recopilación de las concentraciones de Zn y de datos geoquímicos en sitios de drenaje de mina ácidos y neutros. El modelado geoquímico usando PhreeqC, indica que minerales secundarios de Zn difícilmente tengan influencia sobre las concentraciones de Zn excepto cuando Zn excede 100 mg/L y el pH del drenaje de mina es > 7. El modelado de adsorción usando WHAM, indica que Zn es improbable que sea atenuado por adsorción sobre precipitados de Fe y Al que podrían formarse durante la nuetralización o la oxidación de drenajes de minas excepto cuando la relación de Zn precipitado a disuelto es alto (≈100 mg/L de precipitado y 0,1 mg/L Zn) y el pH > 6. En cambio, la concentración de Zn es controlada por los minerales presentes y sus velocidades de disolución y dilución, más que por la precipitación de minerales secundarios de Zn o por adsorción. En sitios de minas abandonados o en prospecciones mineras donde los ensayos de lixiviación se han completado, Zn (±acidez) es el principal parámetro químico que debe ser removido durante la descarga al medio ambiente acuático. Nuestros resultados e interpretaciones restringen opciones para el manejo del agua en futuros sitios de minas en Nueva Zelanda donde Zn esté presente, a: tratamiento activo, tratamiento pasivo usando sistemas reductores, o tratamientos pasivos que incoporen agentes conteniendo CaO para alcanzar pH > 7. El tratamiento pasivo convencional basado en el agregado de caliza difícilmente remueva Zn porque pH > 6 se alcanza raramente en tales sistemas y en un tiempo de reacción razonable. El tratamiento activo difícilmente pueda aplicarse para la decontaminación de sitios mineros abandonados, y por lo tanto el tratamiento pasivo debería incluir un sistema reductor para remover Zn para alcanzar las regulaciones que operan en la protección de ecosistemas acuáticos.

烟煤与浅成热液矿床(新西兰)酸性与中性矿山废水的锌浓度控制

抽象的

锌是烟煤与浅成热液矿床(新西兰)排放废水中含量最多的一种过渡金属。锌在矿山废水中性质稳定且在超过水生态系统保护阈值时仍呈可溶态。研究给出了系列酸性和中性矿山废水排放点的Zn浓度及地球化学特征值。PhreeqC地球化学模拟结果表明,除了在锌浓度超过100 mg/L且矿山废水pH > 7的条件下,次生锌矿不可能影响锌浓度。WHAM吸附模拟结果亦表明,除非当锌的沉淀与溶解比很高(沉淀浓度约100 mg/L,溶解浓度为0.1 mg/L)且pH > 6时,锌浓度不会因被吸附到矿山废水中和与氧化生成的次生铁及铝沉淀而减少。相反,锌浓度主要受原岩矿物及其溶解率、稀释率控制,而不是受次生锌矿及其吸附作用控制。在一些废弃采场或矿蔵勘探区,锌是矿山废水(无论是酸性还是碱性水)排放到水环境之前必须去除的主要化学物质。由于矿山废水的主动处理、基于还原作用的被动处理和利用CaO提高pH > 7的被动处理都涉及锌处理问题,本文研究结果与分析将影响未来新西兰矿山水资源管理。基于石灰石的被动处理系统在可接受反应时间内很少pH > 6而难以去除锌,主动处理系统在修复矿井废水时无法搭建。因此,被动处理系统应该同时包含一个去除Zn的还原系统,以使排放水符合水生态系统保护指南的要求。

Notes

Acknowledgments

We thank the mining companies who have allowed publication of their data. This research was funded by the New Zealand Ministry of Business, Innovation and Employment through research contracts with CRL Energy Ltd.

Supplementary material

10230_2015_372_MOESM1_ESM.zip (447 kb)
Supplementary material 1 (ZIP 446 kb)
10230_2015_372_MOESM2_ESM.docx (20 kb)
Supplementary material 2 (DOCX 20 kb)
10230_2015_372_MOESM3_ESM.docx (11 kb)
Supplementary material 3 (DOCX 11 kb)

References

  1. ANZECC (2000) Australian and New Zealand Guidelines for fresh and marine water quality. Australian and New Zealand Environment and Conservation Council, http://www.environment.gov.au/system/files/resources/53cda9ea-7ec2-49d4-af29-d1dde09e96ef/files/nwqms-guidelines-4-vol1.pdf
  2. Black A, Craw D (2001) Arsenic, copper and zinc occurrence at the Wangaloa coal mine southeast Otago, New Zealand. Int J Coal Geol 45:181–193CrossRefGoogle Scholar
  3. Cameron A (1991) Water treatment at Waihi gold mine, the future of mining in NZ. In: Proceedings of the 25th annual conference, Waihi, AusIMM, pp 67–77Google Scholar
  4. Craw D, Chappell D (1998) Hydrothermal and host rock controls on environmental geochemistry: comparison between Coromandel and Otago. In: Proceedings of the AusIMM NZ Branch Conference, pp 180–192Google Scholar
  5. Davies H (2009) Geochemical change following pH remediation in Mangatini Stream, Stockton Coal Mine, New Zealand. MSc, Univ of Otago, New ZealandGoogle Scholar
  6. Davies H, Weber P, Lindsay P, Craw D, Peake B, Pope J (2011a) Geochemical changes during neutralisation of acid mine drainage in a dynamic mountain stream, New Zealand. Appl Geochem 26:2121–2133CrossRefGoogle Scholar
  7. Davies H, Weber P, Lindsay P, Craw D, Pope J (2011b) Characterisation of acid mine drainage in a high rainfall mountain environment, New Zealand. Sci Total Environ 409:2971–2980CrossRefGoogle Scholar
  8. de Joux A, Moore TA (2005) Geological controls on the source of nickel in Rapid Stream, South Island. In: Moore TA, Black A, Centeno JA, Harding JS, Trumm DA (eds) Metal contaminants in New Zealand. Resolutionz Press, Christchurch, pp 261–276Google Scholar
  9. Dzombak DA, Morel FMM (1990) Surface complexation modeling. Wiley, New York CityGoogle Scholar
  10. Giles E, Jenkins I, Williams S, Kirk A, Fellows D, Press R (2010) Tui mine remediation detailed design report. Underground Mine, Access Road, Waste Rock Stack Remediation Works: URS LtdGoogle Scholar
  11. Mackenzie A (2010) Characterisation of drainage chemistry in Fanny Creek and optimal passive AMD treatment options for Fanny Creek. MSc, Univ of Canterbury, New ZealandGoogle Scholar
  12. Mackenzie A, Pope J, Weber P, Trumm D, Bell D (2011) Characterisation of Fanny Creek catchment acid mine drainage and optimal passive treatment remediation options. In: Proceedings of the AusIMM NZ Branch Conference, pp 281–292Google Scholar
  13. McCauley C, O’Sullivan A, Milke M, Weber P, Trumm D (2009) Sulfate and metal removal in bioreactors treating acid mine drainage dominated with iron and aluminum. Water Res 43:961–970CrossRefGoogle Scholar
  14. McCauley C, O’Sullivan A, Weber P, Trumm D (2010) Variability of Stockton coal mine drainage chemistry and its treatment potential with biogeochemical reactors. N Z J Geol Geophys 53:211–226CrossRefGoogle Scholar
  15. Miller S (1987) Geochemistry and leaching of solid wastes. Golden Cross Mining Project technical report series, Cyprus Minerals New Zealand LtdGoogle Scholar
  16. MOH (2005) Drinking-water standards for New Zealand. Ministry of Health, WellingtonGoogle Scholar
  17. Nordstrom D, Alpers C (1999) Geochemistry of acid mine waters. In: Plumlee G, Logsdon M (eds) Environmental geochemistry of mineral deposits, vol 6A. Soc of Economic Geologists, Littleton, pp 133–160Google Scholar
  18. Nuttall C, Younger P (2000) Zn removal from hard circum-neutral mine waters using a closed-bed limestone reactor. Water Res 34:1262–1268CrossRefGoogle Scholar
  19. Pang L (1995) Contamination of groundwater in the Te Aroha area by heavy metals from an abandoned mine. J Hydrol N Z 33:17–33Google Scholar
  20. Parkhurst DL, Appelo CAJ (1999) Users guide to PHREEQC (version 2)—a computer program for speciation, batch reaction, one dimensional transport and inverse geochemical calculation. USGS 99-4259, http://wwwbrr.cr.usgs.gov/projects/GWC_coupled/phreeqc/html/final.html
  21. Peterson DE, Kindley MJ (1993) Contaminated water management for the Golden Cross Mine. In: Proceedings of the 27th annual AusIMM conference, Wellington, New Zealand, pp 277–288Google Scholar
  22. Pope J, Trumm D (2014) New Zealand coal acid mine drainage—mineral control on acidity and downstream chemical evolution. In: Proceedings of the 12th IMWA Congress interdisciplinary response to mine water challenges: Xuzhou, China, pp 152–156. https://www.imwa.info/docs/imwa_2014/IMWA2014_Pope_152.pdf
  23. Pope J, Weber P (2013) Interpretation of column leach characteristics of Brunner Coal Measures for mine drainage management. In: Proceedings of the AusIMM annual branch conference, pp 377–385Google Scholar
  24. Pope J, Newman N, Craw D, Trumm D, Rait R (2010a) Factors that influence coal mine drainage chemistry, West Coast, South Island, NZ. N Z J Geol Geophys 53:115–128CrossRefGoogle Scholar
  25. Pope J, Weber P, MacKenzie A, Newman N, Rait R (2010b) Correlation of acid base accounting characteristics with the geology of commonly mined coal measures, West Coast and Southland, New Zealand. N Z J Geol Geophys 53:153–166CrossRefGoogle Scholar
  26. Pope J, Rait R, Newman N, Hay S, Rogers M, McCracken L (2011) Geochemical studies of waste rock at the proposed Escarpment open cast mine, Denniston Plateau, West Coast. In: Proceedings of the AusIMM New Zealand Branch Conference, pp 369–380Google Scholar
  27. Smart R, Skinner W, Levay G, Gerson AR, Thomas JE, Sobieraj H, Schumann R, Weisener CG, Weber PA, Miller SD, Stewart WA (2002) Prediction and kinetic control of acid mine drainge. ARD Test Handbook, Project P387A AMIRA International Ltd, Ian Wark Research InstituteGoogle Scholar
  28. Smith KS (1999) Metal sorption on mineral surfaces: an overview with examples relating to mineral deposits. In: Plumlee GS, Logsdon MJ (eds) The environmental geochemistry of mineral deposits, vol 6A. Soc of Economic Geologists, Littleton, pp 161–182Google Scholar
  29. Tipping E (1994) WHAM - a chemical equilibrium model and computer code for waters, sediments and soils incorporating discrete site/electrostatic model of ion binding by humic substances. Comput Geosci 20:973–1023CrossRefGoogle Scholar
  30. Tipping E, Ray-Castro C, Bryan SE, Hamilton-Taylor J (2002) Al(III) and Fe(III) binding to humic substances in fresh waters, and implications for trace metal speciation. Geochim Cosmochim Acta 66:3211–3224CrossRefGoogle Scholar
  31. Trumm D, Watts M (2010) Results of small-scale passive system trials to treat acid mine drainage, West Coast Region, South Island, New Zealand. N Z J Geol Geophys 53:227–237CrossRefGoogle Scholar
  32. Trumm D, Watts M, Pope J, Lindsay P (2008) Using pilot trials to test geochemical treatment of acid mine drainage on Stockton Plateau. N Z J Geol Geophys 51:175–186CrossRefGoogle Scholar
  33. Uster B, O’Sullivan A, Young S, Evans A, Pope J, Trumm D (2015) The use of mussel shells in upward-flow sulfate-reducing bioreactors treating acid mine drainage. Mine Water Environ. doi: 10.1007/s10230-014-0289-1 Google Scholar
  34. Weber P, Skinner W, Hughes J, Lindsay P, Moore T (2006) Source of Ni in coal mine acid rock drainage, West Coast, New Zealand. Int J Coal Geol 67:214–220CrossRefGoogle Scholar
  35. Weisener G, Weber P (2010) Preferential oxidation of pryrite as a function of morphology and relict texture. N Z J Geol Geophys 53:167–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.CRL Energy LtdChristchurchNew Zealand

Personalised recommendations