Skip to main content
Log in

Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco

Verwitterung von Aufbereitungsrückständen und die Mobilität von Arsen in dem verlassenen Silberbergbau Zgounder, Marokko

Lixiviación de colas y movilidad de arsénico en la mina de plata abandonada Zgounder, Marruecos

废弃Zgounder银矿(摩洛哥)尾矿的风化及砷迁移

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

The abandoned Zgounder Mine (Morocco) was exploited for Ag from 1982 to 1990 and generated nearly 490,000 t of mill tailings before it was closed without being reclaimed. The tailings contain low concentrations of sulfide (mainly as pyrite, sphalerite, and galena) and carbonates (mainly dolomite). Silicates (muscovite, albite, chlorite, labradorite, actinolite, and orthoclase) occur in high concentrations. The most abundant trace elements are As, Ti, Fe, Mn, Zn, and Pb. We studied the geochemical behavior of the mine wastes to identify the main factors controlling drainage water chemistry. Particular emphasis was put on sorption phenomena to explain the low As concentrations in the leachates despite significant As levels in the tailings. Weathering cell tests carried out on various tailings produced two types of contaminated drainage: acidic and neutral. The kinetic test leachates contained high concentrations of some contaminants, including As (0.8 mg L−1), Co (11 mg L−1), Cu (34 mg L−1), Fe (70 mg L−1), Mn (126 mg L−1), and Zn (314 mg L−1). Acidity and contaminants in the leachates were controlled by dissolution of soluble salts and Fe hydrolysis rather than sulfide oxidation. Batch sorption tests quantified the significance of As sorption, and sequential extraction showed that most of the As sorption was associated with the reducible fractions (Fe and Mn oxides and oxyhydroxides).

Zusammenfassung

Von 1982 bis 1990 wurde in der verlassenen Zgounder Mine (Marokko) Silber produziert. Dabei fielen nahezu 490.000 t von Aufbereitungsrückständen an, bevor der Bergbau ohne Rekultivierung eingestellt wurde. Die Rückstände enthalten niedrige Konzentrationen von Sulfiden (hauptsächlich Pyrit, Zinkblende und Bleiglanz) und Karbonaten (hauptsächlich Dolomit). Silikate (Muskovit, Albit, Chlorit, Labradorit, Aktinolith und Orthoklas) kommen in hoher Konzentration vor. Die häufigsten Spurenelemente sind As, Ti, Fe, Mn, Zn und Pb. Wir untersuchten das geochemische Verhalten der Aufbereitungsrückstände, um die wichtigsten Faktoren zu identifizieren, welche die Chemie der Sickerwässer kontrollieren. Ein besonderer Schwerpunkt betraf Sorptionsphänomene, um die niedrigen As-Konzentrationen in Laugungslösungen zu erklären, trotz signifikanter Arsengehalte in den Aufbereitungsrückständen. Zellenversuche der Verwitterung verschiedener Rückstände ergaben zwei Typen kontaminierter Dränage: sauer und neutral. Laugungslösungen aus kinetischen Versuchen enthielten hohe Konzentrationen einiger Kontaminanten, unter anderem As (0.8 mg L-1), Co (11 mg L-1), Cu (34 mg L-1), Fe (70 mg L-1), Mn (126 mg L-1) und Zn (314 mg L-1). Azidität und Kontaminanten der Laugungslösungen waren eher durch die Auflösung löslicher Salze und Fe-Hydrolyse kontrolliert als durch Sulfidoxydation. Chargensorptionstests quantifizierten die Bedeutung der As-Sorption, und sequentielle Extraktion zeigte, daß der größte Teil der As-Sorption mit reduzierbaren Fraktionen assoziiert war (Fe und Mn Oxyde und Oxyhydroxyde).

Resumen

La mina abandonada Zgounder (Marruecos) fue explotada para la recuperación de Ag desde 1982 a 1990 y generó cerca de 490.000 toneladas de colas antes de que fuera cerrada. Las colas contienen bajas concentraciones de sulfuros (principalmente como pirita, esfalerita y galena) y carbonatos (principalmente dolomita). Los silicatos (moscovita, albita, clorita, labradorita, actinolita y ortoclasa) están presentes en grandes concentraciones. Los elementos traza más abundantes son As, Ti, Fe, Mn, Zn y Pb. Hemos estudiado el comportamiento geoquímico de los residuos mineros para identificar los principales factores que controlan la química del drenaje. Se ha puesto particular énfasis sobre el fenómeno de sorción para explicar las bajas concentraciones de As en los lixiviados a pesar los elevados niveles de As en las colas. Los ensayos en celdas húmedas sobre las colas produjeron dos tipos de drenajes contaminados: ácidos y neutros. Los ensayos cinéticos mostraron lixiviados con altas concentraciones de algunos contaminantes incluyendo As (0,8 mg L-1), Co (11 mg L-1), Cu (34 mg L-1), Fe (70 mg L-1), Mn (126 mg L-1) y Zn (314 mg L-1). La acidez y los contaminantes en los lixiviados estuvieron controlados por la disolución de sales soluble y por la hidrólisis de Fe más que por la oxidación de los sulfuros. Los ensayos en batch cuantificaron la sorción de As y la extracción secuencial mostró que la mayor parte de esta sorción estaba asociada con las fracciones reducibles (óxidos y oxohidróxidos de Fe y Mn).

抽象

废弃的Zgounder银矿(摩洛哥)在1982~1990年生产期间遗留近490,000吨未处理尾矿。尾矿含有少量硫化物(主要为黄铁矿、闪锌矿和方铅矿)与碳酸盐(主要为白云石)和丰富硅酸盐(主要为白云母、钠长石、绿泥石、拉长石、阳起石和正长石)。尾矿内最丰富的微量元素是As、Ti、Fe、Mn、Zn及Pb。本文研究了尾矿的地球化学行为以识别影响尾矿排放废水水质的主要因素,通过吸附试验研究固体尾矿砷含量高而渗出液砷浓度低的原因。各种类型尾矿的模拟风化实验生成了酸性和中性两种污染废水。动态实验渗出液的高浓度污染物包括As(0.8 mg/L)、 Co (11 mg/L)、Cu (34 mg/L)、Fe (70 mg/L)、Mn (126 mg/L)和Zn (314 mg/L)。渗出液酸度及所含污染物主要受尾矿可溶盐溶解及铁氧化物水解控制而不受硫化物氧化控制。批次吸附试验量化了砷(As)吸附过程,顺次提取试验揭示了砷吸附与还原态铁、锰氧化物及氢氧化物有关的规律。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Adam K, Courtis A, Gazea B, Kontopoulos A (1997) Evaluation of static tests used to predict the potential for acid drainage generation at sulphide mine sites. Trans Inst Min Metal Sect A 106:A1–A8

    Google Scholar 

  • Akcil A, Koldas S (2006) Acid mine drainage (AMD): causes, treatment and case studies. J Clean Prod 14:1139–1145

    Article  Google Scholar 

  • Appelo CAJ, Postma D (2005) Geochemistry, groundwater and pollution, 2nd edn. Balkema, London

    Book  Google Scholar 

  • Asta MP, Cama J, Martínez M, Giménez J (2009) Arsenic removal by goethite and jarosite in acidic conditions and its environmental implications. J Hazard Mater 171:965–972

    Article  Google Scholar 

  • Aubertin M, Bussière B, Berbier LR (2002) Environnement et gestion des rejets miniers. CD-ROM, Presses internationales de Polytechnique, Paris

  • Bagherifam S, Lakzian A, Fotovat A, Khorasani R, Komarneni S (2014) In situ stabilization of As and Sb with naturally occurring Mn, Al and Fe oxides in a calcareous soil: bioaccessibility, bioavailability and speciation studies. J Hazard Mater 273:247–252

    Article  Google Scholar 

  • Beauchemin S, Kwong YTJ (2006) Impact of redox conditions on arsenic mobilization from tailings in a wetland with neutral drainage. Environ Sci Technol 40:6297–6303

    Article  Google Scholar 

  • Belzile N, Chen YW, Cai MF, Li Y (2004) A review on pyrrhotite oxydation. J Geochem Explor 84:65–76

    Article  Google Scholar 

  • Benzaazoua M, Bussière B, Dagenais AM, Archambault M (2004) Kinetic tests comparison and interpretation for the prediction of the Joutel tailings acid generation potentiel. Environ Geol 46:1086–1101

    Article  Google Scholar 

  • Blowes DW, Ptacek CJ (1994) Acid-neutralization mechanisms in inactive mine tailing. In: Jambor J, Blowes D (eds) Schort course handbook on environmental geochemistry of sulfide mine-wastes. Mineralogical Society of Canada, Ottawa, pp 271–292

    Google Scholar 

  • Blowes DW, Jambor JL, Hanton-Fong ChJ (1998) Geochemical, mineralogical and microbiological characterization of a sulphide-bearing carbonate-rich gold-mine tailings impoundment, Joutel, Québec. Appl Geochem 13(6):687–705

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 6:309–319. https://zumbuhllab.unibas.ch/pdf/refs/BET_JACS_1938.pdf

  • Carrillo A, Drever JI (1998) Adsorption of arsenic by natural aquifer material in the San Antonio-El Triunfo mining area, Baja California, Mexico. Environ Geol 35(4):251–257

    Article  Google Scholar 

  • Cheng H, Hu Y, Luo J, Xu B, Zhao J (2009) Geochemical processes controlling fate and transport of arsenic in acid mine drainage (AMD) and natural systems. J Hazard Mater 165:13–26

    Article  Google Scholar 

  • Cruz R, Mendez BA, Monroy M, Gonzalez I (2001) Cyclic voltammetry applied to evaluate reactivity in sulfide mining residues. Appl Geochem 16:1631–1640

    Article  Google Scholar 

  • Dold B (2003) Speciation of the most soluble phases in a sequential extraction procedure adapted for geochemical studies of copper sulphide mine waste. J Geochem Explor 80:55–68

    Article  Google Scholar 

  • Drahota P, Filippi M, Ettler V, Rohovec J, Mihaljevič M, Šebek O (2012) Natural attenuation of arsenic in soils near a highly contaminated historical mine waste dump. Sci Total Environ 414:546–555

    Article  Google Scholar 

  • Dutta PK, Ray AK, Sharma VK, Millero FJ (2004) Adsorption of arsenate and arsenite on titanium dioxide suspensions. J Colloid Interface Sci 278:270–275

    Article  Google Scholar 

  • Edmond Eary L, Williamson MA (2006) Simulations of the neutralizing capacity of silicate rocks in acid mine drainage environments. In: Barnhisel RI (eds) Proceedings of the 7th international conference on acid rock drainage (ICARD). American Society of Mining and Reclamation (ASMR), Lexington, KY, USA, pp 564–577. http://www.asmr.us/Publications/Conference%20Proceedings/2006/0564-Eary-Co.pdf

  • Expertise Center in Environmental Analysis of Quebec (2012) Protocole de lixiviation pour les espèces inorganiques, MA. 100 – Lix.com.1.1, Rév. 1, Ministère du Développement durable, de l’Environnement, de la Faune et des Parcs du Québec, Canada

  • Foli G, Gawu SKY, Manu J, Nude PM (2013) Arsenic sorption characteristics in decommissioned tailings dam environment at the Obuasi Mine, Ghana. Res J Environ Earth Sci 5(10):599–610

    Google Scholar 

  • Frostad SR, Price WA, Bent H (2003) Operational NP determination—accounting for iron manganese carbonates and developing a site-specific fizz rating. In: Spiers G, Beckett P, Conroy H (eds) Mining and the environment, Sudbury. Laurentian University, Sudbury, pp 231–237

    Google Scholar 

  • Fukushi K, Sasaki M, Sato T, Yanase N, Amano H, Ikeda H (2003) A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump. Appl Geochem 18:1267–1278

    Article  Google Scholar 

  • Galán E, Gómez-Ariza JL, González I, Fernández-Caliani JC, Morales E, Giráldez I (2003) Heavy metal partitioning in river sediments severely polluted by acid mine drainage in the Iberian Pyrite Belt. Appl Geochem 18:409–421

    Article  Google Scholar 

  • García-Sánchez A, Alonso-Rojo P, Santos-Francés F (2010) Distribution and mobility of arsenic in soils of a mining area (western Spain). Sci Total Environ 408:4194–4201

    Article  Google Scholar 

  • Giménez J, Martínez M, de Pablo J, Rovira M, Duro L (2007) Arsenic sorption onto natural hematite, magnetite, and goethite. J Hazard Mater 141:575–580

    Article  Google Scholar 

  • Gunsinger MR, Ptacek CJ, Blowes DW, Jambor JL, Moncur MC (2006) Mechanisms controlling acid neutralization and metal mobility within a Ni-rich tailing impoundment. Appl Geochem 21:1301–1321

    Article  Google Scholar 

  • Haffert L, Craw D, Pope J (2010) Climatic and compositional controls on secondary arsenic mineral formation in high-arsenic mine wastes, South Island, New Zealand. NZ J Geol Geophys 53:91–101

    Article  Google Scholar 

  • Hakkou R, Benzaazoua M, Bussière B (2008) Acid mine drainage at the abandoned kettara mine (Morocco): 1. Environmental characterization. Mine Water Environ 27:145–159

    Article  Google Scholar 

  • Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431

    Article  Google Scholar 

  • Harris DL, Lottermoser BG, Duchesne J (2003) Ephemeral acid mine drainage at the Montalbion silver mine, north Queensland. Aust J Earth Sci 50:797–809

    Article  Google Scholar 

  • Holmström H, Jungberg J, Öhlander B (1999) Role of carbonates in mitigation of metal release from mining waste. Evidence from humidity cells tests. Environ Geol 37(4):267–280

    Article  Google Scholar 

  • Jambor JL, Blowes DW (1998) Theory and applications of mineralogy in environmental studies of sulfide bearing mine wastes. In: Cabri LJ, Vaughan DJ (Eds) Modern approaches to ore and environmental mineralogy, vol 27. Mineralogical Association of Canada Short Course Series, Canada, pp 367–401

  • Jurjovec J, Ptacek CJ, Blowes D (2002) Acid neutralization mechanisms and metal release in mine tailings: a laboratory column experiment. Geochim Cosmochim Acta 66(9):1511–1523

    Article  Google Scholar 

  • Kim KR, Lee BT, Kim KW (2012) Arsenic stabilization in mine tailings using nano sized magnetite and zero valent iron with the enhancement of mobility by surface coating. J Geochem Explor 113:124–129

    Article  Google Scholar 

  • Kwong YTJ (1993) Prediction and prevention of acid rock drainage from a geological and mineralogical perspective. MEND report 1.32.1. CANMET, Ottawa

  • Lappako K (2000) Kinetic tests. Short course on mine waste characterization and drainage quality prediction. ICARD, Canada, pp 44–59

  • Lawrence RW, Wang Y (1996) Determination of neutralizing potential for acid rock drainage prediction. MEND/NEDEM report 1.16.3. Canadian Centre for Mineral and Energy Technology, Ottawa

  • Lawrence RW, Poling GW, Marchant PB (1989) Investigation of predictive techniques for acid mine drainage. MEND/NEDEM report 1.16.1a. Canadian Centre for Mineral and Energy Technology, Ottawa

  • Lei L, Song C, Xie X, Li Y, Wang F (2010) Acid mine drainage and heavy metal contamination in groundwater of metal sulfide mine at arid territory (BS mine, Western Australia). Trans Nonferr Metal Soc China 20:1488–1493

    Article  Google Scholar 

  • Limousin G, Gaudet JP, Charlet L, Szenknect S, Barthes V, Krimissa M (2007) Sorption isotherms: a review on physical bases, modeling and measurement. Appl Geochem 22:249–275

    Article  Google Scholar 

  • Lizama KA, Fletcher TD, Sun G (2011) Removal processes for arsenic in constructed wetlands. Chemosphere 84:1032–1043

    Article  Google Scholar 

  • Macroux E, Wadjinny A (2005) The Ag–Hg Zgounder ore deposit (Jebel Siroua, Anti-Atlas, Morocco): a Neoproterozoic epithermal mineralization of the Imiter type. CR Geosci 337(16):1439–1446

  • Mahoney J, Langmuir D, Gosselin N, Rowson J (2005) Arsenic readily released to pore waters from buried mill tailings. Appl Geochem 20:947–959

    Article  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2009) Arsenic adsorption onto hematite and goethite. CR Chim 12:876–881

    Article  Google Scholar 

  • Mamindy-Pajany Y, Hurel C, Marmier N, Roméo M (2011) Arsenic(V) adsorption from aqueous solution onto goethite, hematite, magnetite and zero-valent iron: effects of pH, concentration and reversibility. Desalination 281:93–99

    Article  Google Scholar 

  • Merkus HG (2009) Particle size measurements fundamentals, practice, quality. Particle technology series, vol 17, Springer, Berlin. doi:10.1007/978-1-4020-9016-5_6

  • Miller SD, Jeffery JJ, Wong JWC (1991) Use and misuse of the acid base account for “AMD” prediction. In: Proceedings of the 2nd international conference on acid rock drainage (ICARD), Montréal, Canada, vol 3, pp 489–506

  • Miller SD, Stewart WS, Rusdinar Y, Schumann RE, Ciccarelli JM (2010) Methods for estimation of long-term non-carbonate neutralization of acid rock drainage. Sci Total Environ 408:2129–2135

    Article  Google Scholar 

  • Murray J, Kirschbaum A, Dold B, Guimaraes EM, Pannunzio E (2014) Jarosite versus soluble iron-sulfate formation and their role in acid mine drainage formation at the Pan de Azúcar mine tailings (Zn–Pb–Ag), NW Argentina. Minerals 4:477–502

    Article  Google Scholar 

  • Neculita CM, Zagury GJ, Bussière B (2008) Effectiveness of sulfate-reducing passive bioreactors for treating highly contaminated acid mine drainage: II. Metal removal mechanisms and potential mobility. Appl Geochem 23:3545–3560

    Article  Google Scholar 

  • Niyogi DK, Lewis WM Jr, McKnight DM (2002) Effects of stress from mine drainage on diversity, biomass, and function of primary producers in Mountain streams. Ecosystems 5:554–567

    Google Scholar 

  • Palumbo-Roe B, Klinck B, Cave M (2007) Arsenic speciation and mobility in mine wastes from a copper–arsenic mine in Devon, UK: an SEM, XAS, sequential chemical extraction study. Trace Metals Contam Environ 9:431–460

    Google Scholar 

  • Petruk W (1975) Mineralogy and geology of the Zgounder silver deposit in Morocco. Can Mineral 13:43–54

    Google Scholar 

  • Plante B, Benzaazoua M, Bussière B, Biesinger MC, Pratt AR (2010) Study of Ni sorption onto Tio mine waste rock surfaces. Appl Geochem 25:1830–1844

    Article  Google Scholar 

  • Plante B, Benzaazoua M, Bussière B (2011) Predicting geochemical behavior of waste rock with low acid generating potential using laboratory kinetic tests. Mine Water Environ 30:2–21

    Article  Google Scholar 

  • Potts PJ (1987) A Handbook of silicate rock analysis. Blakie, London

    Book  Google Scholar 

  • Pöykiö R, Perämäki P, Välimäki I, Kuokkanen T (2002) Estimation of environmental mobility of heavy metals using a sequential leaching of particulate material emitted from an opencast chrome mine complex. Anal Bioanal Chem 373:190–194

    Article  Google Scholar 

  • Rietveld HM (1993) The Rietveld method. Oxford University Press, London

    Google Scholar 

  • Skousen J, Renton J, Brown H, Evans P, Leavitt B, Brady K, Cohen L, Ziemkiewicz P (1997) Neutralization potential of overburden samples containing siderite. J Environ Qual 26:673–681

    Article  Google Scholar 

  • Smedley PL, Kinniburgh DG (2002) A review of the source, behaviour and distribution of arsenic in natural waters. Appl Geochem 17:517–568

    Article  Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. EPA-600/2-78-054. Washington, DC, pp 47–50

  • SRK (Steffen Robertson and Kristen) (1989) Acid rock drainage technical guide. BCAMD task force, vol 1. BiTech, Richmond

  • Tessier A, Campbell PGC, Bisson M (1978) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51(7):844–851

    Article  Google Scholar 

  • Villeneuve M, Bussière B, Benzaazoua M, Aubertin M, Monroy M (2004) The influence of kinetic test type on the geochemical response of low acid generating potential tailings. In: Proceedings of the tailings and minewaste ‘03, Sweets and Zeitlinger, Vail, CO, USA, pp 269–279

  • Yan L, Hu S, Duan J, Jing C (2014) Insights from arsenate adsorption on rutile (110): grazing-incidence X-ray absorption fine structure spectroscopy and DFT+ U study. J Phys Chem 118(26):4759–4765

    Article  Google Scholar 

Download references

Acknowledgments

Financial support for this study was provided through the International Research Chairs Initiative, a program funded by the International Development Research Centre (IDRC) and by the Canada Research Chairs program (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. El Adnani.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Fig. S1

Photographs showing sampling points in the North (a and b) and South (c) tailings pond trenches: ZG1, ZG3, and ZG6 for surface, ZG4 for slightly altered tailings, ZG2, ZG5, and ZG7 as fresh tailings (PDF 4179 kb)

Fig. S2

SEM backscattered images showing: a) Cd-sphalerite grain, b) Fe-oxide resulting from pyrite weathering, both pyrite and Fe-oxide contain As, c) Fe oxide grain, which contains As, Zn, Cu, and S (PDF 2317 kb)

Fig. S3

Absolute and normalized sequential extractions results for As for the initial tailings samples (a and b) and for post-testing samples (c and d) (PDF 472 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Adnani, M., Plante, B., Benzaazoua, M. et al. Tailings Weathering and Arsenic Mobility at the Abandoned Zgounder Silver Mine, Morocco. Mine Water Environ 35, 508–524 (2016). https://doi.org/10.1007/s10230-015-0370-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0370-4

Keywords

Navigation