Skip to main content
Log in

Evaluation of pH Testing Methods for Sulfidic Mine Waste

Bewertung von pH Prüfverfahren für sulfidische Abfälle

Evaluación de los métodos de medida de pH para residuos mineros sulfurados

硫化物废矿石的pH值测定方法

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Environmental assessment of solid mine waste is required throughout the life of a mine. This has driven the need for tools and practices to understand the current state of net acidity in mine wastes. Rinse and paste pH tests are commonly used in the initial screening of waste to provide a preliminary evaluation of its current net acidity. Such pH tests are particularly useful for assessing the chemistry of first flush waters draining sulfidic rocks and wastes. In this study, we compared nine different pH tests (rinse and paste pH tests as well as soil tests of the International Organization for Standardization ISO 10390:2005; American Society for Testing and Materials ASTM D4972-01 2007; Standards Australia AS4969.2-2008), using three different sulfidic rock samples and the acid–base accounting standard KZK-1. We observed significant variability in measured pH for the same samples using the different test methods. We show that different rinse and paste pH methods using different grain sizes and extraction solutions can result in different risk classification for ARD assessments. We recommend carrying out pH measurements using 0.01 M CaCl2 solution, which results in more rapid, reproducible, and precise analyses than using deionised water.

Zusammenfassung

Die Umweltprüfung von festen bergbaulichen Abfällen ist während der gesamten Betriebsdauer eines Bergwerks notwendig. Dies hat die Entwicklung von Werkzeugen und Methoden zur Ermittlung des aktuellen Zustands der Nettoacidität in Bergbauabfällen vorangetrieben. Die pH-Wert-Messung in Bodenlösungen wird üblicherweise in der ersten Untersuchung von Feststoffen angewandt, um die Nettoacidität abzuschätzen. Solche pH-Wert-Messungen sind besonders hilfreich für die Abschätzung der Hydrochemie in sogenannten First-Flush-Wässern aus sulfidischen Gesteinen und Abfällen. In der vorliegenden Studie wurden neun verschiedene pH-Verfahren (in der Bodenlösung sowie Bodentests der Internationalen Organisation für Normung ISO 10390:2005; der Amerikanischen Gesellschaft für Prüfungen und Materialien ASTM D4972-01 2007; der Australischen Normenorganisation AS4969.2-2008) verglichen. Die pH-Verfahren wurden an drei verschiedenen sulfidischen Gesteinsproben sowie an dem Säure-Base-Bilanz-Standard KZK-1 durchgeführt. Wir beobachteten bei den unterschiedlichen Prüfverfahren signifikante Unterschiede der gemessenen pH-Werte für gleiche Proben. Wir zeigen, dass die Verwendung unterschiedlicher Korngrößen und Extraktionslösungen bei den pH-Verfahren in der Bodenlösung zu Differenzen in der Abschätzung des Versauerungspotentials führt. Wir empfehlen die Verwendung von 0.01 M CaCl2-Lösung zur Herstellung der Bodenlösung, da gegenüber destilliertem Wasser die pH-Wert-Messung schneller, reproduzierbarer und präziser ist.

Resumen

Durante la vida de una mina, se requiere realizar permanentes relevamientos ambientales de los residuos mineros sólidos. Esto conlleva el uso de herramientas y prácticas para evaluar la acidez neta de los residuos mineros. Los ensayos de pH en pasta son comúnmente usados en el análisis inicial de los residuos para proporcionar una evaluación preliminar de su acidez neta. Tales ensayos de pH son particularmente útiles para indicar la química de los primeros flujos de agua que drenan las rocas sulfuradas y los residuos. En este estudio comparamos nueve diferentes ensayos de pH (ensayos de pH en pasta y ensayos de la International Organization for Standardization ISO 10390:2005; American Society for Testing and Materials ASTM D4972-01 2007; Standards Australia AS4969.2-2008), usando tres diferentes muestras de roca sulfurada y normas de cuantificación ácido-base KZK-1. Se observó una significativa variabilidad en la medida de pH para las mismas muestras empleando diferentes métodos. Mostramos que los diferentes métodos de pH en pasta, usando diferentes tamaños de grano y soluciones extractivas, pueden resultar en clasificaciones diferentes para el riesgo de ARD. Recomendamos realizar las medidas de pH utilizando solución 0.01 M CaCl2 que resulta en análisis más rápidos, reproducibles y precisos que usando agua desionizada.

摘要

矿山固体废矿石的环境影响评价贯穿整个采矿生产过程,推动着矿山废矿石净酸度评价方法的发展。废矿石的冲洗液和糊状物pH试验(rinse and paste pH tests)用以评价废矿石现状净酸度特征,尤其适于初期流经硫化物废矿石的冲洗液的水化学特征分析,能够为矿山废矿石的初步产酸风险分类提供重要试验依据。利用3种不同的硫化物废矿石样品,采用KZK-1酸-碱平衡计算方法,比较了冲洗液和糊状物pH试验及国标 (ISO 10390:2005)、美国试验与材料协会标准 (ASTM D4972-01 2007) 和澳大利亚标准 (AS4969.2-2008) 的土壤pH试验等9种不同的pH试验结果。结果显示,相同样品、不同pH测试方法的实测pH值明显不同。冲洗液和糊状物pH试验 (rinse and paste pH tests) 会因试验颗粒粒径和浸取液等试验条件变化而导致废矿石产酸风险分类不同。建议使用0.01 M的CaCl2溶液进行pH试验;因为它比去离子水试验速度更快、试验可重复性更好、试验精度更高。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Afzal M, Yasin M (2002) Effect of soil to water ratios on chemical properties of saline-sodic and normal soils. Pakistan J Agri Res 17:379–386

    Google Scholar 

  • American Society for Testing and Materials (ASTM) D4972–01(2007) (2007) Standard test method for pH of soils. ASTM International, West Conshohocken

    Google Scholar 

  • Bowell RJ, Rees SB, Parshley JV (2000) Geochemical predictions of metal leaching and acid generation: geologic controls and baseline assessment. Proc Geol Ore Depos 2000 Great Basin Beyond 2:799–823

    Google Scholar 

  • Brezinski DP (1983) Kinetic, static and stirring errors of liquid junction reference electrodes. Analyst 108:425–442

    Article  Google Scholar 

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319

    Article  Google Scholar 

  • Buck RP, Rondinini S, Covington AK, Baucke FGK, Brett CMA, Camões MF, Milton MJT, Mussini T, Naumann R, Pratt KW, Spitzer P, Wilson GS (2002) Measurement of pH. Definition, standards, and procedures. Pure Appl Chem 74:2169–2200

    Article  Google Scholar 

  • CANMET Certificate of Analysis KZK-1 (2007) CANMET mining and mineral sciences laboratories, Ottawa, Ontario, Canada, http://www.nrcan.gc.ca/sites/www.nrcan.gc.ca/files/mineralsmetals/pdf/mms-smm/tect-tech/ccrmp/cer-cer/kzk-1-eng.pdf

  • Conyers MK, Davey BG (1988) Observations of some routine methods for soil pH determination. Soil Sci 145(1):29–36

    Article  Google Scholar 

  • Covington AK, Whalley PD, Davison W (1985) Recommendations for the determination of pH in low ionic strength fresh waters. Pure Appl Chem 56:877–886

    Google Scholar 

  • Davey BG, Conyers MK (1988) Determining the pH of acid soils. Soil Sci 146(3):141–150

    Article  Google Scholar 

  • Förstner U, Salomons W (1980) Trace metal analysis on polluted sediments. Part I: assessment of sources and intensities. Environ Tech Lett 1:494–505

    Article  Google Scholar 

  • Green GR (1990) Palaeozoic geology and mineral deposits of Tasmania. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. Australasian Institute of Mining and Metallurgy(AIMM), Melbourne, pp 1207–1223

    Google Scholar 

  • Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulphate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431

    Article  Google Scholar 

  • Hills PB (1990) Mount Lyell copper–gold–silver deposits. In: Hughes FE (ed) Geology of the mineral deposits of Australia and Papua New Guinea. AIMM, Melbourne, pp 1257–1266

    Google Scholar 

  • Illingworth JA (1981) A common source of error in pH measurements. Biogeochem J 195:259–262

    Google Scholar 

  • International Organization for Standardization ISO 10390:2005(E) (2005) Soil quality—determination of pH. International Organization for Standardization, Geneva

    Google Scholar 

  • Jambor JL, Nordstrom DK, Alpers CN (2000) Metal-sulfate salts from sulphide mineral oxidation. Rev Mineral Geochem 40:303–350

    Article  Google Scholar 

  • Jennings SR, Dollhopf JD, Inskeep WP (2000) Acid production from sulphide minerals using hydrogen peroxide weathering. Appl Geochem 15:235–243

    Article  Google Scholar 

  • Kissel DE, Sonon L, Vendrell PF, Issac RA (2009) Salt concentration and measurement of soil pH. Comm Soil Sci Plant Anal 40:179–187

    Article  Google Scholar 

  • Langmuir D (1997) Aqueous environmental geochemistry. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Lapakko KA, Engstrom JN, Antonson DA (2006) Effects of particle size on drainage quality from three lithologies. In: Proceedings of 7th international conference on acid rock drainage (ICARD), pp 1026–1050

  • Liu R, Wolfe AL, Dzombak DA, Stewart BW, Capo RC (2008) Comparison of dissolution under oxic acid drainage conditions for eight sedimentary and hydrothermal pyrite samples. Environ Geol 56:171–182

    Article  Google Scholar 

  • Lottermoser BG (2010) Mine wastes: characterization, treatment and environmental impacts, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  • McIntosh Reid A, Henderson QJ (1929) Avoca mineral district, geological survey bull 40. Dept of Mines, Hobart

    Google Scholar 

  • Miller RO, Kissel DE (2010) Comparison of soil pH methods on soils of North America. Soil Sci Soc Am J 74:310–316

    Article  Google Scholar 

  • Morin KA, Hutt NM (1997) Environmental geochemistry of minesite drainage: practical theory and case studies. MDAG Publ, Vancouver

    Google Scholar 

  • Parbhakar-Fox AK, Edraki M, Bradshaw D, Walters S (2011) Development of a textural index for the prediction of acid rock drainage. Min Eng 24:1277–1287

    Article  Google Scholar 

  • Parbhakar-Fox AK, Edraki M, Hardie K, Kadletz O, Hall T (2014) Identification of acid rock drainage sources through mesotextural classification at abandoned mines of Croydon, Australia: implications for the rehabilitation of waste rock repositories. J Geochem Explor 137:11–28

    Article  Google Scholar 

  • Plumlee GS (1999) The environmental geology of mineral deposits. In: Plumlee GS., Lodgson MJ (eds) The environmental geochemistry of mineral deposits part A: processes, techniques and health issues. Reviews in Economic Geology, vol 6B. Society of Economic Geologists, Littleton, pp 71–116

  • Price WA (2009) Prediction manual for drainage chemistry from sulfidic geologic materials. MEND report 1.20.1, CANMET Mining and Mineral Sciences Laboratories, Smithers, Canada

  • Rayment GE, Lyons DJ (2010) Soil chemical methods: Australasia. CSIRO Publ, Melbourne

    Google Scholar 

  • Raymond OL (1996) Pyrite composition and ore genesis in the Prince Lyell copper deposit, Mt Lyell mineral field, western Tasmania, Australia. Ore Geol Rev 10:231–250

    Article  Google Scholar 

  • Rice KC, Herman JS (2012) Acidification of Earth: an assessment across mechanisms and scales. Appl Geochem 27:1–14

    Article  Google Scholar 

  • Shaw SC, Robertson AM, Maehl WC (2000) Material characterization and prioritization of remediation measures at the Zortman/Landusky mine sites. In: Proceedings of 2000 Billings land reclamation symposium, BLRS’00, Billings, MT, USA, pp 346–358

  • Smart R, Skinner B, Levay G, Gerson A, Thomas J, Sobieraj H, Schumann R, Weisener C, Weber P, Miller S, Stewart W (2002) AMIRA P387A prediction and kinetic control of acid mine drainage. AMIRA International, Melbourne

    Google Scholar 

  • Sobek AA, Schuller WA, Freeman JR, Smith RM (1978) Field and laboratory methods applicable to overburdens and mine soils. US EPA-600/2-78-054, Cincinnati, OH, USA

  • Standards Australia AS4969.2-2008 (2008) Analysis of acid sulfate soil—dried samples—methods of test—determination of pHKCl and titratable actual acidity (TAA). Standards Australia, Sydney

    Google Scholar 

  • Stevens RE, Carro MK (1948) Simple field test for distinguishing minerals by abrasion pH. Am Miner 33:31–50

    Google Scholar 

  • Stromberg B, Banwart S (1999) Weathering kinetics of waste rock from the Aitik copper mine, Sweden: scale dependent rate factors and pH controls in large column experiments. J Contam Hydrol 39(1–2):59–89

    Article  Google Scholar 

  • Sumner ME (1994) Measurement of soil pH: problems and solutions. Comm Soil Sci Plant Anal 25:859–879

    Article  Google Scholar 

  • Tremblay GA, Hogan CM (2001) Mine environment neutral drainage (MEND) Manual 5.4.2d: prevention and control. Canada Centre for Mineral and Energy Technology, Natural Resources, Ottawa, Canada

  • Van Eck M, Child R (1990) Croydon gold deposits. In: Hughes FE (ed) Geology and mineral deposits of Australia and Papua New Guinea. Monograph 14. Australian Inst of Mining and Metallurgy, Carlton, pp 979–982

    Google Scholar 

  • Weber PA, Hughes JB, Conner LB, Lindsay P, Smart C (2006) Short-term acid rock drainage characteristics determined by paste pH and kinetic NAG testing: Cypress prospect, New Zealand. In: Proceedings of 7th ICARD, pp 2289–2310

  • Wiesner AD, Katz LE, Chen C-C (2006) The impact of ionic strength and background electrolyte on pH measurements in metal ion absorption experiments. J Colloid Interface Sci 301:329–332

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of CRC ORE, established and supported by the Australian Government’s Cooperative Research Centres Programme. Copper Mines of Tasmania and the Queensland Dept. of Natural Resources and Mines are thanked for access to sulfidic rocks. Dr. Daniel Gregory is thanked for initial sample preparation. Mr. John Aalders is acknowledged for his support in the laboratory and with sample preparation. Dr. Stafford McKnight (Federation University) is acknowledged for his expertise in QXRD.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Taryn L. Noble.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 16 kb)

Supplementary material 2 (DOCX 22 kb)

Supplementary Fig. 1

Risk classification of the bulk samples based on the total metal and metalloid concentrations and the rinse and paste pH values from this study. The pH data plotted are from methods using DI water and 0.01 M CaCl2. The classification is based on the risk of acid rock drainage (ARD) and high metal loading (ML) for RG-WRD1, CMT-WRD1 and CMT-ROM1. (PDF 314 kb)

Supplementary Fig. 2

pH data for waste rock samples from Croydon, Queensland. Two size fractions, <0.075 mm and <2 mm were compared following ASTM D4972-01(2007)(E) (ASTM; + for <0.075 mm and × for <2 mm) and ISO 10390:2005(E) (ISO; circles) methods using 0.01 M CaCl2. Paste pH data measured using Smart et al. (2002) based on distilled water as the extraction solution are also shown (diamond). The pH data measured using 0.01 M CaCl2 are clustered according to grain size despite differences in the methodological procedures. The pink shaded area below pH 5.5 highlights the paste pH cut-off criterion used by Parbhakar-Fox et al. (2014) in ARD risk classification of the waste rock samples into non-acid forming (NAF) and potentially acid forming (PAF) materials. (PDF 324 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Noble, T.L., Lottermoser, B.G. & Parbhakar-Fox, A. Evaluation of pH Testing Methods for Sulfidic Mine Waste. Mine Water Environ 35, 318–331 (2016). https://doi.org/10.1007/s10230-015-0356-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0356-2

Keywords

Navigation