Skip to main content
Log in

Hydrogeological Behavior of a Store-and-Release Cover: A Comparison Between Field Column Tests and Numerical Predictions With or Without Hysteresis Effects

Hydrogeologisches Verhalten einer Speicher- und Abgabe-Abdeckung: Vergleich zwischen Feldsäulentests und numerischen Prognosen mit und ohne Hysterese

Comportamiento hidrogeológico de una cubierta de almacenamiento y liberación: una comparación entre los ensayos de columna en campo y las predicciones numéricas con o sin efectos de histéresis

储存-释放型腾发覆盖层的水文地质过程:现场土柱实验与数值模拟结果的滞后效应对比

  • Technical Article
  • Published:
Mine Water and the Environment Aims and scope Submit manuscript

Abstract

Non-hysteretic numerical codes are often used to design store-and-release (SR) cover systems. Hysteretic and non-hysteretic predictions were compared using field measurements with instrumented column tests, consisting of fine-grained SR material (phosphate limestone waste) with high hysteretic behavior (hysteretic ratio ≈11) placed over a capillary break layer. Transient unsaturated water flow was then predicted using a one-dimensional code (HYDRUS-1D) under semi-arid climatic conditions over 1 year. Non-hysteretic simulation based on the main wetting curve of the SR material and hysteretic simulation were validated with the measured data. The compared results showed better agreement between measured and predicted values for non-hysteretic simulation during wet periods, whereas the hysteretic scenario showed better agreement with field measurements during dry periods. The influence of hysteresis effects on the complex transient unsaturated water flow of the tested scenarios and conditions is considered minor.

Zusammenfassung

Zur Dimensionierung von Speicher- und Abgabe-Abdeckungssystemen (SAAS) werden oft nicht-hysteretische numerische Codes verwendet. Hier werden nicht-hysteretische und hysteretische Prognosen verglichen, basierend auf Feldmessungen mit instrumentierten Säulentests, bestehend aus feinkörnigem SAAS-Material (Phosphatkalkabgang) mit ausgeprägt hysteretischem Verhalten (hysteretisches Verhältnis ca. 11), welches über einer kapillarbrechenden Schicht aufgebracht wurde. Instationäre ungesättigte Wasserströmung wurde für ein Jahr unter semiariden klimatischen Bedingungen mit einem eindimensionalen Code (HYDRUS-1D) vorausberechnet. Nicht-hysteretische Simulation basierend auf der Hauptbenetzungskurve des SAAS Materials und hysteretische Simulation wurden mit den Meßdaten validiert. Die verglichenen Resultate zeigen eine bessere Übereinstimmung für nicht-hysteretische Simulation zwischen gemessenen und vorhergesagten Werten während feuchter Perioden, wogegen das hysteretische Szenario eine bessere Übereinstimmung während trockener Perioden zeigte. Der Einfluß von Hysteresewirkungen auf die komplexe instationäre ungesättigte Wasserströmung der untersuchten Szenarios und Bedingungen wird als gering erachtet.

Resumen

Frecuentemente se utilizan códigos numéricos no-histeréticos para el diseño de sistemas de cubierta para almacenamiento y liberación (SR). Se compararon predicciones histeréticas y no histeréticas usando mediciones de campo con ensayos de columna consistentes en material SR de grado fino (residuo fosfato-caliza) con alto comportamiento histerético (coeficiente de histéresis ≈11) ubicado sobre una capa de ruptura capilar. Se predijo un flujo transiente de agua insaturada usando un código unidimensional (HYDRUS-1D) bajo condiciones climáticas semiáridas en un período de un año. La simulación no histerética basado en la principal curva de humectación del material SR y la simulación histerética, se validaron con los datos medidos. Los resultados mostraron un mejor acuerdo entre los valores medidos y predichos para la simulación no histerética durante los períodos húmedos mientras que el escenario histerético acordó mejor con los valores de campos en períodos secos. La influencia de los efectos de histéresis sobre el flujo transiente de agua insaturada de los escenarios analizados, se consideró poco significativo.

抽象

不考虑滞后效应的非饱和流数值模拟常用于储存-释放型腾发覆盖层(SR)设计。文章利用现场可监控非饱和流土柱实验对比了考虑滞后效应与不考虑滞后效应的水文地质过程差异。现场试验土柱由细粒储存-释放型腾发覆盖层(SR)材料(磷灰岩废矿石)组成,置于粗粒毛细隔层之上,试验系统滞后效应较强(滞后比(hysteretic ratio)≈11)。采用非饱和流一维流模拟软件(HYDRUS-1D)模拟预测试验系统在半干旱区一年多时间内的瞬时非饱和流变化。利用现场土柱试验实测值验证基于储存-释放型腾发覆盖层(SR)材料主湿润曲线的无滞后模拟和滞后模拟的合理性。对比结果显示,雨季实测结果与无滞后模拟预测值吻合较好,而滞后模拟预测值与旱季现场实测值吻合较好。滞后作用对不同试验情形与条件的瞬时非饱和流影响较小。

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abbasi F, Javaux M, Vanclooster M, Feyen J (2012) Estimating hysteresis in the soil water retention curve from monolith experiments. Geoderma 189:480–490. doi:10.1016/j.geoderma.2012.06.013

    Article  Google Scholar 

  • Albright WH, Benson CH, Gee GW, Roesler AC, Abichou T, Apiwantragoon P, Lyles BF, Rock SA (2004) Field water balance of landfill final covers. J Environ Qual 33(6):2317–2332. doi:10.2134/jeq2004.2317

    Article  Google Scholar 

  • ASTM (2002) D 5856-95: standard test methods for measurement of hydraulic conductivity porous materials using a rigid-wall compaction-mold permeameter. Annu Book ASTM Stand. doi:10.1520/D5856-95R02E01

    Google Scholar 

  • ASTM (2006) D2434-68: standard test method for permeability of granular soils constant head. Annu Book ASTM Stand. doi:10.1520/D2434-68R06

    Google Scholar 

  • ASTM (2008) D 6836-02: standard test methods for determination of the soil water characteristic curve for desorption using a hanging column pressure extractor chilled mirror hygrometer and\or centrifuge. Annu Book ASTM Stand. doi:10.1520/D6836-02R08E02

    Google Scholar 

  • Benson CH (2007) Modeling unsaturated flow and atmospheric interactions. In: Schanz T (ed) Theoretical and numerical unsaturated soil mechanics, vol 113. Springer, Berlin, pp 187–201. doi:10.1007/3-540-69876-0_20

  • Benson CH, Abichou T, Albright WH, Gee GW, Roesler AC (2001) Field evaluation of alternative earthen final covers. Int J Phytorem 3(1):105–127. doi:10.1080/15226510108500052

    Article  Google Scholar 

  • Benson CH, Albright WH, Roesler AC, Abichou T (2002) Evaluation of final cover performance: field data from the alternative cover assessment program (ACAP). In: Proceedings of the WM’02 conference, Tucson, AZ, USA. https://www.dri.edu/images/stories/research/programs/acap/acap-publications/8.pdf

  • Benson CH, Bohnhoff G, Apiwantragoon P, Ogorzalek A, Shackelford C, Albright W (2004) Comparison of model predictions and field data for an ET cover. In: Proceedings of the tailings and mine waste’04, Balkema, Leiden, the Netherlands, pp 137–142

  • Bohnhoff GL, Ogorzalek AS, Benson CH, Shackelford CD, Apiwantragoon P (2009) Field data and water-balance predictions for a monolithic cover in a semiarid climate. J Geotech Geoenv Eng 135(3):333–348. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Bossé B (2014) Évaluation du comportement hydrogéologique d’un recouvrement alternatif constitué de rejets calcaires phosphatés en climat semi-aride à aride. PhD Diss, UQAT, Rouyn-Noranda, Canada

  • Bossé B, Bussière B, Hakkou R, Maqsoud A, Benzaazoua M (2013) Assessment of phosphate limestone wastes as a component of a store-and-release cover in a semiarid climate. Mine Water Environ 32(2):152–167. doi:10.1007/s10230-013-0225-9

    Article  Google Scholar 

  • Bossé B, Bussière B, Hakkou R, Maqsoud A, Benzaazoua M (2015) Field experimental cells to assess hydrogeological behaviour of store-and-release covers made with phosphate mine waste. Can Geotech J 52:1–15. doi:10.1139/cgj-2014-0263

    Article  Google Scholar 

  • Bussière B, Aubertin M, Mbonimpa M, Molson JW, Chapuis RP (2007) Field experimental cells to evaluate the hydrogeological behaviour of oxygen barriers made of silty materials. Can Geotech J 44(3):245–265. doi:10.1139/t06-120

    Article  Google Scholar 

  • Davis DD, Horton R, Heitman JL, Ren TS (2009) Wettability and hysteresis effects on water sorption in relatively dry soil. Soil Sci Soc Am J 73(6):1947–1951. doi:10.2136/sssaj2009.00028N

    Article  Google Scholar 

  • Decagon (2009) Dielectric water potential sensor. Operator’s manual, version 3. Decagon Devices Inc, Pullman

  • Decagon (2012) EC-5 soil moisture sensor. User’s manual, version 1. Decagon Devices Inc, Pullman

  • Dwyer SF (2003) Water balance measurements and computer simulations of landfill covers. PhD Diss, Univ of New Mexico, Albuquerque, NM, USA

  • Fala O, Molson J, Aubertin M, Bussière B (2005) Numerical modeling of flow and capillary barrier effects in unsaturated wastes rock piles. Mine Water Environ 24(4):172–185. doi:10.1007/s10230-005-0093-z

    Article  Google Scholar 

  • Fayer MJ, Gee GW (1997) Hydrologic model tests for landfill covers using field data. In: Proceedings of the landfill capping in the semi-arid west: problems, perspectives and solutions. Env Sci and Res Foundation, Idaho Falls, ID, USA, pp 53–68

  • Fayer MJ, Rockhold ML, Campbell MD (1992) Hydrologic modeling of protective barriers: comparison of field data and simulation results. Soil Sci Soc Am J 56(3):690–700. doi:10.2136/sssaj1992.03615995005600030004x

    Article  Google Scholar 

  • Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, New York

    Book  Google Scholar 

  • Fredlund DG, Xing A (1994) Equations for the soil-water characteristic curve. Can Geotech J 31(4):521–532. doi:10.1139/t94-061

    Article  Google Scholar 

  • Haines WB (1930) Studies in the physical properties of soil. V. The hysteresis effect in capillary properties, and the modes of moisture distribution associated therewith. J Agric Sci 20(1):97–116. doi:10.1017/S002185960008864X

    Article  Google Scholar 

  • Haverkamp R, Reggiani P, Ross PJ, Parlange JY (2002) Soil water hysteresis prediction model based on theory and geometric scaling. Environ Mech Water Mass Energy Transf Biosph Philip 129:213–246. doi:10.1029/129GM19

    Article  Google Scholar 

  • Hogarth W, Hopmans J, Parlange JY (1988) Applications of a simple soil water hysteresis model. J Hydrol 98(1):21–29. doi:10.1016/0022-1694(88)90203-X

    Article  Google Scholar 

  • Huang HC, Tan YC, Liu CW, Chen CH (2005) A novel hysteresis model in unsaturated soil. Hydrol Proc 19(8):1653–1665. doi:10.1002/hyp.5594

    Article  Google Scholar 

  • Huang M, Barbour SL, Elshorbagy A, Zettl JD, Si BC (2011) Infiltration and drainage processes in multi-layered coarse soils. Can J Soil Sci 91(2):169–183. doi:10.4141/CJSS09118

    Article  Google Scholar 

  • Huang M, Bruch PG, Barbour SL (2013) Evaporation and water redistribution in layered unsaturated soil profiles. Vadose Zone J 12(1). doi:10.2136/vzj2012.0108

    Article  Google Scholar 

  • Jaynes DB (1984) Comparison of soil-water hysteresis models. J Hydrol 75(1):287–299. doi:10.1016/0022-1694(84)90054-4

    Article  Google Scholar 

  • Khire MV, Benson CH, Bosscher PJ (1997) Water balance modeling of earthen final covers. J Geotech Geoenv Eng 123(8):744–754. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Khire MV, Benson CH, Bosscher PJ (1999) Field data from a capillary barrier and model predictions with UNSAT-H. J Geotech Geoenv Eng 125(6):518–527. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Khire MV, Benson CH, Bosscher PJ (2000) Capillary barriers: design variables and water balance. J Geotech Geoenv Eng 126(8):695–708. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Kool JB, Parker JC (1987) Development and evaluation of closed-form expressions for hysteretic soil hydraulic properties. Water Resour Res 23(1):105–114. doi:10.1029/WR023i001p00105

    Article  Google Scholar 

  • Lee KS (2007) Effects of hysteresis in k–S–p relationship on the performance of mine waste soil covers. Geosc J 11(3):241–247. doi:10.1007/BF02913937

    Article  Google Scholar 

  • Li XS (2005) Modeling of hysteresis response for arbitrary wetting/drying paths. Comput Geotech 32(2):133–137. doi:10.1016/j.compgeo.2004.12.002

    Article  Google Scholar 

  • Liu Y, Parlange JY, Steenhuis TS, Haverkamp R (1995) A soil water hysteresis model for fingered flow data. Water Resour Res 31(9):2263–2266. doi:10.1029/95WR01649

    Article  Google Scholar 

  • Maqsoud A, Bussière B, Aubertin M, Mbonimpa M (2012) Predicting hysteresis of the water retention curve from basic properties of granular soils. Geotech Geol Eng 30(5):1147–1159. doi:10.1007/s10706-012-9529-y

    Article  Google Scholar 

  • McCarthy DF (2007) Essentials of soil mechanics and foundations: basic geotechnics, 7th edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Miller EE, Miller RD (1956) Physical theory for capillary flow phenomena. J Appl Phys 27(4):324–332. doi:10.1063/1.1722370

    Article  Google Scholar 

  • Mitchell RJ, Mayer AS (1998) The significance of hysteresis in modeling solute transport in unsaturated porous media. Soil Sci Soc Am J 62(6):1506–1512. doi:10.2136/sssaj1998.03615995006200060005x

    Article  Google Scholar 

  • Morris CE, Stormont JC (1997) Capillary barriers and subtitle D covers: estimating equivalency. J Environ Eng 123(1):3–10. doi:10.1061/(ASCE)0733-9372

    Article  Google Scholar 

  • Morris CE, Stormont JC (1998) Evaluation of numerical simulations of capillary barrier field tests. Geotech Geol Eng 16(3):201–213. doi:10.1023/A:1008853710339

    Article  Google Scholar 

  • Mualem Y (1974) A conceptual model of hysteresis. Water Resour Res 10(3):514–520. doi:10.1029/WR010i003p00514

    Article  Google Scholar 

  • Mualem Y (1977) Extension of the similarity hypothesis used for modeling the soil water characteristics. Water Resour Res 13(4):773–780. doi:10.1029/WR013i004p00773

    Article  Google Scholar 

  • Mualem Y (1984a) Prediction of the soil boundary wetting curve. J Soil Sci 137(6):379–390. doi:10.1097/00010694-198406000-00001

    Article  Google Scholar 

  • Mualem Y (1984b) A modified dependent domain theory of hysteresis. J Soil Sci 137(5):283–291. doi:10.1097/00010694-198405000-00001

    Article  Google Scholar 

  • Mualem Y, Beriozkin A (2009) General scaling rules of the hysteretic water retention function based on Mualem’s domain theory. Eur J Soil Sci 60(4):652–661. doi:10.1111/j.1365-2389.2009.01130.x

    Article  Google Scholar 

  • Nimmo JR (1992) Semi-empirical model of soil water hysteresis. Soil Sci Soc Am J 56:1723–1730. doi:10.2136/sssaj1992.03615995005600060011x

    Article  Google Scholar 

  • Nuth M, Laloui L (2008) Advances in modeling hysteretic water retention curve in deformable soils. Comput Geotech 35(6):835–844. doi:10.1016/j.compgeo.2008.08.001

    Article  Google Scholar 

  • Nyhan JW (2005) Seven-year water balance study of an evapotranspiration landfill cover varying in slope for semiarid regions. Vadose Zone J 4(3):466–480. doi:10.2136/vzj2003.0159

    Article  Google Scholar 

  • Ogan BD, Wilson GV, Albright WH, Gee GW, Fayer MJ, Rock S (1999) Sensitivity analysis and validation of numerical models used in the design of alternative landfill covers. Annual Meeting Abstracts, Soil Sci Soc of Am, Salt Lake City, UT, USA

  • Ogorzalek AS, Bohnhoff GL, Shackelford CD, Benson CH, Apiwantragroon P (2008) Comparison of field data and water-balance predictions for a capillary barrier cover. J Geotech Geoenv Eng 134(4):470–486. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Pang L, Close ME, Watt JPC, Vincent KW (2000) Simulation of picloram atrazine and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. J Cont Hydrol 44(1):19–46. doi:10.1016/S0169-7722(00)00091-7

    Article  Google Scholar 

  • Parker JC, Lenhard RJ (1987) A model for hysteretic constitutive relations governing multiphase flow. 1 saturation—pressure relations. Water Resour Res 23(12):2187–2196. doi:10.1029/WR023i012p02187

    Article  Google Scholar 

  • Parlange JY (1976) Capillary hysteresis and the relationship between drying and wetting curves. Water Resour Res 12(2):224–228. doi:10.1029/WR012i002p00224

    Article  Google Scholar 

  • Pedroso DM, Williams DJ (2010) A novel approach for modeling soil water retention characteristic curves with hysteresis. Comput Geotech 37(3):374–380. doi:10.1016/j.compgeo.2009.12.004

    Article  Google Scholar 

  • Pham QH, Fredlund DG, Barbour SL (2003) A practical hysteresis model for the soil-water characteristic curve for soils with negligible volume change. Géotechnique 53(2):293–298. doi:10.1680/geot.2003.53.2.293

    Article  Google Scholar 

  • Poulovassilis A (1962) Hysteresis of pore water an application of concept of independent domains. Soil Sci 93(6):405–412. doi:10.1097/00010694-196206000-00007

    Article  Google Scholar 

  • Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333. doi:10.1063/1.1745010

    Article  Google Scholar 

  • Rock S, Myers B, Fiedler L (2012) Evapotranspiration (ET) Covers. Int J Phytoremediat 14(S1):1–25. doi:10.1080/15226514.2011.609195

    Article  Google Scholar 

  • Royer JM, Vachaud G (1975) Field determination of hysteresis in soil-water characteristic. Soil Sci Soc Am J 39(2):221–223. doi:10.2136/sssaj1975.03615995003900020006x

    Article  Google Scholar 

  • Scanlon BR, Christman M, Reedy RC, Porro I, Šimůnek J, Flerchinger GN (2002) Intercode comparisons for simulating water balance of surficial sediments in semiarid regions. Water Resour Res 38(12):1323–1339. doi:10.1029/2001WR001233

    Article  Google Scholar 

  • Scanlon BR, Reedy RC, Keese KE, Dwyer SF (2005) Evaluation of evapotranspirative covers for waste containment in arid and semiarid regions in the southwestern USA. Vadose Zone J 4(1):55–71. doi:10.2136/vzj2005.0055

    Article  Google Scholar 

  • Schaap MG, Leij FJ (2000) Improved prediction of unsaturated hydraulic conductivity with the Mualem-van Genuchten model. Soil Sci Soc Am J 64(3):843–851. doi:10.2136/sssaj2000.643843x

    Article  Google Scholar 

  • Scott PS, Farquhar GJ, Kouwen N (1983) Hysteretic effects on net infiltration. Advances in infiltration. Am Soc of Agri Eng, Chicago, pp 163–170

    Google Scholar 

  • Shackelford CD, Chang CK, Chiu TF (1994) The capillary barrier effect in unsaturated flow through soil barriers. In: Proceedings of the 1st international congress on Env Geotech, Edmonton, Canada, pp 789–793

  • Si BC, Kachanoski RG (2000) Unified solution for infiltration and drainage with hysteresis: theory and field test. Soil Sci Soc Am J 64(1):30–36. doi:10.2136/sssaj2000.64130x

    Article  Google Scholar 

  • Šimůnek J, Kodešová R, Gribb MM, van Genuchten MTh (1999) Estimating hysteresis in the soil water retention function from cone permeameter experiments. Water Resour Res 35(5):1329–1345. doi:10.1029/1998WR900110

    Article  Google Scholar 

  • Šimůnek J, van Genuchten MTh, Šejna M (2008) Development and applications of the HYDRUS and STANMOD software packages and related codes. Vadose Zone J 7(2):587–600. doi:10.2136/vzj2007.0077

    Article  Google Scholar 

  • Šimůnek J, Šejna M, Saito H, Sakai M, van Genuchten MTh (2009) The HYDRUS-1D software package for simulating the one-dimensional movement of water heat and multiple solutes in variability-saturated media. Version 415, Dept of Env Sci, Univ of California, Riverside, CA, USA

  • Stormont JC, Anderson C (1999) Capillary barrier effect from underlying coarser layer. J Geotech Geoenv Eng 125(8):641–648. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Stormont JC, Morris CE (1998) Method to estimate water storage capacity of capillary barriers. J Geotech Geoenv Eng 124(4):297–302. doi:10.1061/(ASCE)1090-0241

    Article  Google Scholar 

  • Tan YC, Ma KC, Chen CH, Ke KY, Wang MT (2009) A numerical model of infiltration processes for hysteretic flow coupled with mass conservation. Irrig Drain 58(3):366–380. doi:10.1002/ird.403

    Article  Google Scholar 

  • Topp GC (1971) Soil-water hysteresis: the domain theory extended to pore interaction conditions. Soil Sci Soc Am J 35(2):219–225. doi:10.2136/sssaj1971.03615995003500020017x

    Article  Google Scholar 

  • Van Genuchten MTh (1980) A closed form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. doi:10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  • Vereecken H, Diels J, Viaene P (1995) The effects of soil heterogeneity hysteresis on solute transport: a numerical experiment. Ecoll Model 77:273–288. doi:10.1016/0304-3800(94)00183-I

    Article  Google Scholar 

  • Vogel TK, Huang K, Zhang R, van Genuchten MTh (1996) The HYDRUS code for simulating one-dimensional water flow solute transport and heat movement in variably-saturated media. Version 5, research report 140, US Salinity Laboratory, USDA ARS, Riverside, CA, USA

  • Watson KK, Reginato RJ, Jackson RD (1975) Soil water hysteresis in a field soil. Soil Sci Soc Am J 39(2):242–246. doi:10.2136/sssaj1975.03615995003900020010x

    Article  Google Scholar 

  • Werner AD, Lockington DA (2006) Artificial pumping errors in the Kool-Parker scaling model of soil moisture hysteresis. J Hydrol 325:118–133. doi:10.1016/j.jhydrol.2005.10.012

    Article  Google Scholar 

  • Wilson GW, Fredlund DG, Barbour SL (1997) The effect of soil suction on evaporative fluxes from soil surfaces. Can Geotech J 34(1):145–155. doi:10.1139/t96-078

    Article  Google Scholar 

  • Yang H, Rahardjo H, Wibawa B, Leong EC (2004) A soil column apparatus for laboratory infiltration study. Geotech Test J 27(4):347–355. doi:10.1520/GTJ11549

    Google Scholar 

  • Yang C, Sheng D, Carter JP (2012a) Effect on hydraulic hysteresis on seepage analysis for unsaturated soils. Comput Geotech 41:36–56. doi:10.1016/j.compgeo.2011.11.006

    Article  Google Scholar 

  • Yang C, Sheng D, Carter JP (2012b) Stochastic evaluation of hydraulic hysteresis in unsaturated soils. J Geotech Geonenviron Eng 39(7):1211–1214. doi:10.1061/(ASCE)GT.1943-5606.0000833

    Google Scholar 

  • Zhan G, Keller J, Milczarek M, Giraudo J (2014) 11 years of evapotranspiration cover performance at the AA leach pad at Barrick Goldstrike Mines. Mine Water Environ 33(3):195–205. doi:10.1007/s10230-014-0268-6

    Article  Google Scholar 

  • Zhang Q, Werner AD, Aviyanto RF, Hutson JL (2009) Influence of soil moisture hysteresis on the functioning of capillary barriers. Hydrol Process 23(9):1369–1375. doi:10.1002/hyp.7261

    Article  Google Scholar 

  • Zhou AN (2013) A contact angle-dependent hysteresis model for soil-water retention behavior. Comput Geotech 49:36–42. doi:10.1016/j.compgeo.2012.10.004

    Article  Google Scholar 

Download references

Acknowledgments

Financial support was provided under the International Research Chairs Initiative, a program funded by the International Development Research Centre (IDRC) and the Canada Research Chairs Program, and the Industrial NSERC Polytechnique-UQAT Chair on Environment and Mine Wastes Management (Canada).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bruno Bussière.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. 1

Main WRCs of the fine-grained (a) and coarse-grained materials (b) (MWC main wetting curve, MDC main drying curve). (PDF 119 kb)

Supplemental Fig. 2

Unsaturated hydraulic conductivity functions of the coarse- and fine-grained materials (MDC main drying curve, MWC main wetting curve). (PDF 65 kb)

Supplemental Fig. 3

Schematic representation of the column testing (Bossé et al. 2013) and the finite-element grid used in numerical modeling. (PDF 223 kb)

Supplemental Fig. 4

Texture profile of 80 cm depth and initial suctions used at the beginning of the simulations. (PDF 51 kb)

Supplemental Fig. 5

Climatic data (year 2011) used for the upper boundary condition: daily rainfalls (a), potential evaporation calculated from HYDRUS-1D (b). (PDF 216 kb)

Supplemental Fig. 6

Sensitivity of the hCritA value on the non-hysteretic (volumetric water content (a) and matric suction (b) time trends) predictions at 10 cm depth. (PDF 236 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bossé, B., Bussière, B., Maqsoud, A. et al. Hydrogeological Behavior of a Store-and-Release Cover: A Comparison Between Field Column Tests and Numerical Predictions With or Without Hysteresis Effects. Mine Water Environ 35, 221–234 (2016). https://doi.org/10.1007/s10230-015-0350-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10230-015-0350-8

Keywords

Navigation